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ABSTRACY

This report gives a detailed dewnpton of parag and dumonschality prope
gation for the Equational Programmung Language compuier  The bguational
Programming Language. called EPL. © 3 oy hgh leved Sxilerative
language designed to specify paralie! and eyl ume compatatsons The §1Y
compiler translates equaional sprcificatsoms wnto proxmdural  gh  ievel
language (currently C). The compuler itseifl is mnioem an C for EAIX twand
systems. Automated tools YACC and LEX has bewn wend for Iewucal snalyan
and parsing. Detailed descnpuon s given of the druge and mmpiomnmation
of the algorithms for building different stractures (wxh s aymidol tabile,
equation Tees, ctc.). These souctures are used Dy subunguont Pow parwng
analysis and code-generation phases of the EPL compuicr The dewonption of
the algorithm for dimensionality propagation 1 alw incladed
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1. INTRODUCTION

1.1. Historical overview and EPL

A slowdown in the rate of growth of computing power available from single pro-
cessor, a dramatic decrease in the hardware cost and a everlasting need for faster com-
putations especially for many real-time application have inspired both users and
developers of large scale computers to investigate the feasibility of parallel computa-

tion [1].

With the advent of highly parallel computers need for efficient, user-friendly com-
pilers that help to design parallel computations became apparent. In the rraditional
sequential control flow model (often referred to as Von Neumann), there is a single
thread of control which is passed from instruction to instruction [2]. In the parallel
control flow model, special parallel control operators such as FORK and JOIN are
used to explicitly specify parallelism. These operators allow more than one thread of
control to be active at any instant and provide means for synchronizing these threads

of control.

Parallel processing of a sequential algorithrh can be achieved in a program expli-

-
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citly or implicitly. For explicit parallelism, users must i provaded warh pragramitung
constructs that permit them to express paraliehism in a program Thus the programime
is endowed with responsibility for efficiency of program caecutian The progratnme
has to know the system reasonably well (especially the hprdewtt snd the opetatng
system) and (s)he has to decide which pormons of the program should te rus 10 parel
lel. How well the underlying parallehism has been caplowtnd entrely dnponds on the
knowledge, skill, and judgement of the programmes Thus 1 undessrabie an mowt coars
Since parallel computers are mosdy used by soentiss and ongtwers of various

different fields as a tool for thewr computations, it s 3 hesvy bardon o thee pan

It is much more desirable that the compuicr be abie 10 drermue the undrtiving
parallelism in an algorithm. The programmer » thes releved fromn the faponstulity of
indicating and extracting parallelsm. Thus. the parsilel tuiune cen e ven® more
efficiently. To achieve that the programming langusge ha w0 hyve festaws rnabling
the user’s to specify hisvher algonthm without presnitmag the fiow of gontrol Only
necessary data dependencies will be impixitly presers in the weer spocshicanon  Sogn
ning user’s specification, the compiler recognizes pywubie contnd floews Then n the
optimization stage, the compiler selects that contred fircm stuch cresmes the M prsresl.
lel code (the largest number of program unitc mdach (2= run 3n parsllels Beeed on the

selected control flow and other concadenanont axh 2 svnchromzsthen pensitv,  the




compiler creaes Bloxis o uaity of program statements and groups them into processes.
Some of Aewe procenes (e unny of program statements) may be independent during
eascution (e . cassunoa of one process does not affect the other) and thus can be run
concurrently uaing &ifferent processons  Generaung these independent processes, the
compiler producesy complese program which include communication and synchroniza-

tion protocoke Aevewary to execule these processes concurrently.

in conerast, mont of the present day concurrent programming languages (such as
ADA, concurrent Algol. Concurrent Pascal, etc. ) use explicit parallelism, so they can
not be cested s user-fnendly. apant from being inefficient for programs written by
uasophnticaed programmers.

This document describes the design of some major parts of the compiler meant to
be uwsed in highly parallel computing environment. The compiled language supports
wnplicit parallelism and is appropriately called Equational Programming Language or
EPL. To exuact maximum parallelism in a user specification, the language is made
non-procedural. i.e. the statements in a specification does not have any linear ordering.
Shuffling the staternents in a specification does not change its meaning. The advantage
of this feature is that the compiler is given the opportunity to find out the sequential
dependencies among the statements (or more appropriately, equations) and hence the

processes that can be run concurrently, without any directive being provided by the
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user regarding the parallelization. If this feature is absent then different ways of coding
the algorithm in a language will have different efficiency, delegating the responsibility
of selecting the particular coding for the most efficient program to the user. The pres-
ence of this feature also has the added advantage of giving the opportunity to minimize
the synchronization overhead, since the compiler can estimate the run-time of different

processes that are to be run concurrently and adjust the processes accordingly.

1.2, EPL system

EPL system is a language translator for a non-procedural equational programming
language. In a program written in EPL, there is no linear ordering among the equa-
tions, (i.e., a program obtained by permuting the statements of the original program
produces the same object code on compilation). Therefore the EPL translator differs
greatly in organization and scope from a conventional compiler. There are several
phases of translation in the EPL system. The figure below shows the block diagram
for the entire EPL system. The Lexical analyzer, Parser and the Dimension propaga-

tion phases are described in details in this document.

The EPL system may be divided into the following phases of translation:

0




LEXICAL ANALYZER :

Like other conventional language translators EPL also uses lexical analyzer to
break down the character stream in the user’s program into a stream of suitable tokens
that are to be used by the parser. The parser and the lexical analyzer works interac-
tively. The parser calls the lexical analyzer repeatedly. Each time lexical analyzer 1s
called, it absorbs some characters from the source program and returmns a token to the

parser along with a value of the token. if any [7].

PARSER :

The parser checks whether the tokens retumed by the lexical analyzer forms 3
sentence that belongs to the grammar of EPL (3, 7). If the senwence does not belong 10
the EPL grammar then the parser reports syntax error the first time st detocts it dunng
parsing, and then it does ermor recovery and proceeds w parse the rest of the program
The parser tries to report as many errors as possibie (30 that the user does not hgve 10
compile his/her program repeatedly) and at the same time thes to keep redundant error
messages to the minimum. However like other compilers . it rght give redundant

error messages. Some syntax errors may be hidden by others

If no syntax error is found. the parser accepts the program and buiide the cymhnl

table, equation trees and other related glohai daia stuctures that charwenzes the pm.
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Unlike other language translators EPL does extensive post-parsing analysis before

the actual code is generated. These analysis is divided into the following translation

phases :

EXTENSIVE SEMANTIC CHECKING :

Fig. 1 shows that there are three semantic checking phases in the system placed
in three strategic points in the system. The greatly increased semantic checking is
caused by the features of the language, which allows data structures and indices in the
user’s program to be left undeclared (their type will be established by data type propa-
gation phase -- any contradiction in the implied data type for an undeclared data struc-
ture or index will be detected at this point by semantic phase III). The flexibility in
the language to allow undeclared data items increases the need for detailed analysis of
the declared data items to ensure that they are consistent and complete (that is data
types for all undeclared data items can be established by analyzing the data types of

the declared data items) [5].

DATA TYPE PROPAGATION :

As mentioned earlier, EPL allows the user to leave some data items undeclared in
his/her program provided they are used, if they are done consistently, i.e., the data

types of the undeclared data items can be inferred from the declared data items by




analyzing the equations where they are used. Data type propagation does this propa-
gation of data types from the fields of the declared data structures in the user's pro-
gram to the undeclared data items in the program in a meaningful and consistent
manner. Semantic error will be reported by the semantic checking phase if analysis
finds that the declared variables are incomplete (that is they are not sufficient to deter-

mine the data types of all other undeclared data items) and/or incompatible (S5, 6].

ARRAY GRAPH CONSTRUCTION :

Array graph is one of the most important structure in the EPL system. As men-
tioned before, an EPL program does not contain any information regarding the sequen-
tial dependencies of its equations. Though some equations can be executed con-
currently, in general not all the equations can be executed at the same time. The exe-
cution of those equations which use a variable in the right hand side of the equation
that is being defined by some other equation has to wait till the defining equation is
executed. After analyzing the equations of a program array graph is constructed, which
represents the sequential dependencies among different data structures and equations in

the program which must be enforced for a meaningful computation [4,6).

DIMENSION PROPAGATION :

An important feature of EPL is that it allows the user to drop subscripting expres-




uons consistently across the equanont  This feature relieves the wses trom the rouune
job of consisiently wnung the wHaNPONg capitanons when they are obviously under:
standable. permunng him 10 concentraie move on the basx algonthm Thu feature
also becomes very useful 1n many wicntfic 3pplanons whefe sOME COMPUWRLON Pro-
cedure nced 10 be performed using different number of dimensions  In thewe cases the
user needs to change only the dimennons of the declared data iems and the contents
of the files. He/she does not need 10 make any change 1a the algonthm (Chancenrad
by the equations) itself. Dimension propaganon phase of the language translasdon flls
in the dropped dimensions by propagating dimensions stanting from the fields of the
input and output file structures. The propagation 13 based on the analysis of the equa-

tions with the help of the array graph (6).

RANGE PROPAGATION :

To obtain independence from user specified sequentiality (which may be nuslead-
ing for parallelization purpose) in an EPL program, EPL grammar does not have many
conventional programming language constructs. One of the most important of such
programming language construct that is absent in EPL is the iterative loop. Since any
nontrivial algorithm has parts of its computation to be done iteratively, EPL must
have some means to specify iteration, protecting non-procedurality at the same time.

Ranged EPL data items are used to share values which are defined inside a loop, at
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cach iteration. For more flexibility and convenience of the user, EPL allows the user
o omit the upper bound of these ranges. Complex analysis of the user’s declared
structural ranges and run-time defined structural and subscript ranges is needed in
order to determine meaningful and consistent bounding values for the ranges, The

ranges are also the bounding values for the loops in the generated code [6).

OPTIMIZATION :

Most compilers written today includes an optimization phase to make the object
code more efficient (in terms of time or space or both, depending on particular
environment in which they are proposed to be used). However in a very few of them
the opdmization phase is as important as in the EPL system. There is no explicit itera-
ton construct in the EPL grammar. Even a single valued data item that are defined in
an iteration in a conventional programming language, is equivalently defined as a
ranged data item in a comresponding EPL program. This range is equal to the number
of ikenations - to accumulate the value of the data item at each iteration, since all or
some of them may be used by some other equations in the program. Even a small
EPL program that computes through a large number of implicit iterations would
requiie' a large memory. Therefore an optimization stage is performed to reduce the
dimensionality of multidimensional structures that do not require any referencing of the

past values (or at least do not refer to values distant from the current value) (6, 3].
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SCHEDULING :

Unless the algorithm itself is written in a parallel form , the algorithm can be
divided into sub-computations. At execution time, some of the sub-computations can

be executed concurrently. Scheduling determines the groups of units (or processes) in

“an EPL program that can be run concurrently ( by separate processors ), and schedules

these groups. Since array graph contains the dependence relationship among the asser-

tion and data nodes, it is the major data structure used for scheduling [6].

1.3. Project Overview

1.3.1. Project Scope

The system components that have been designed and implemented in this project

include :

1. Lexical Analyzer

2. Syntax Analyzer

3. Dimensionality Propagation
4, Scheduler

S. Optimization

The other components of the system are already built or in the process of being

built by other members of the research group. The work for the scheduler is nearing

completion and the work for the optimization phase is about to be started.
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1.3.2. Computing Environment

The EPL system components described in this document are implemented in the
Sequent Balance 21000 computer at the department of Computer Science in Rensselaer
Polytechnic Institute running the Dynix operating system. The system is written in the
programming language C. Currently the objective of the system is to translate from
EPL source code to C object code using FORK and JOIN statements in the produced
object code for parallel execution. System libraries used in the implementation are
<stdio.h>, <strings.h>, <ctype.h> and <sys/types.h>. The code is written with portabil-

ity to other UNIX based systems in mind.

2. Global Data Structures

2.1, Symbol Table




-13 -

2.1.1. Formal description of the symbol table

The symbol table is organized as a hash table having 101 buckets. The hash func-
tion used for this purpose is described later in the algorithm "hash”. Each entry in the

symbol table has 14 fields. They are described as follows :-

1. *symbol_name

This is a pointer to the character string for the symbol for which this entry is
created. A symbol here may be a variable name (see ref. 1 for legal variable

names), a real or integer constant or some reserved words like LAST, RANGE,

ADDRESS, PRESENT, CASE, etc. A symbol table entry is always created for
the symbol PROCESS. Since PROCESS is a reserved word in equational pro-
gramming language, it can not appear in the user’s program to denote a data
item. All the data structures in the user’s program that does not belong to any file
structure are made part of an intermediate file structure. The name of this file is
PROCESS. In equational programming language same identifier may denote
different variables (or data items). Typical example is when the same identifier is
used to denote data items belonging to different file structures. So in the symbol
table there might be more than one entry for the same symbol in the same bucket

(all belong to different files) .




. 2. *parent

if the enery v made for a fiekd. group. or record of a declared data structure in
the user’s program then this Acld contains & pointer to the parent of this data item
in that data stuctre  If 10 the user's program some daa structure is found that

does aot delong 10 any fle wructure then the parent field of the topmost data item

in that data wyucture contains 3 pounter to the symbol table entry for PROCESS

and it n made the next ubling of the last child added to this intermediate file

s ture

If there s no posuible parent for the symbol for which the entry is created
then this field contuns NULL. Symbols representing file name, subscripts,

integer or real constant do not have any parent.

3. *old_child

This field contains a pointer to the oldest child of the symbol table entry. The
oldest child is the data item that comes just after the data item declaration in the
user’s program for which the entry is created and is preceded by a larger integer

than the integer that precedes the data item for which the entry is created.

If there is no child then this field is NULL.
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i 4. *sibling

This field contains a pointer to the next sibling. Next sibling is the data item that
* is in the same level as the data item for which the entry is created and comes just

after it in the user’s program declaration. If there is no ’'next sibling’ and the

entry is not for a subscript then it is NULL.

In the case of subscript this field contains a pointer to the head of the link list of
all the pointers to the symbol table entry corresponding to the names listed in the
nlist of subscript or sublinear subscript description. In other words this is the
linked list of all the pointers to the symbol table entry comresponding to the data

items that can be subscripted using the subscript for which the entry is created.
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S. type_of_use

This field contains the ‘type of use’ informanon of the symbol This ficld may

contain any value berween 0 and 1S depending on the type of use of the symbol
in the user's program. Following 13 the list of all possible type of uses along

with their codes :

0 = The enty represents an 1dentifier that has not been declared , has
not been used as the target of an assertion. and has not appeared
in an indexing expression.

1 = Subscript

2 = Field

3 = Group

4 = Record

S = File

6 = Last

7 = Present

8 = Range

9 = The entry is for an undeclared identifier that has been used in a
subscript expression, but never used as a target of an assertion.

10= The entry is for an undeclared data name that has been found to be
the target of an assertion.

11= Function

12= Address

14= Constant

15= CASE *

There is no ordinary variable. For example, when a variable is declared as :

int : just_a_name; - !H

T
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% the comresponding symbol table entry contains 2 indicating it as a field (of some

interim file, the name of which is PROCESS ).

6. file_type

* If the entry is created for a data item then this field indicates the type of file in
which the symbol for which the entry is created belongs. In equational program-
ming language there are four different types of files. Since during parsing we
* might come across the name of a data item before it is declared in a file structure

(if it is declared at all), we need a code to indicate that the data item has not

been declared in a file structure as yet.

0 = Sequental
1 = Directed
2 = Display

3 = Port

4 = not known yet

For ordinary variable this field is O, i.e., by default the file PROCESS is sequen- 4
tial.
If the symbol table entry is for the symbol "LAST" or "RANGE" then this

field contains the number of repetition of "LAST." or effective number of repeti-

tion of "RANGE." (if "LAST." is preceded by "RANGE." then the "LAST."s are

reckoned as "RANGE.") in the user’s program. !i
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7. type

This field contains the data type information for the fields. There are eight
different data types possible in the equational programming language. For char-
acter declarations the size of a variable might not be known when the symbol
table entry is created (sometimes, the size is not even at the end of parsing) . For
this case code 8 is used. If the number of character is known to be "n” then this
field contains "-n". As before when the entry is created for a data item, its data
type may be unknown, which requires to use a code (here "0" is used ) to indi-
cate "yet unknown". If the entry is not for a "field" of a declared file structure in

the user’s program then also this field will contain "0".

-n = character

0 = yet unknown
1 = short integer
2 = integer

3 = long integer
4 = real

5 = double (real)
6 = quad (real)
7 = logical

8 = char (no size is known yet).

8. io_flags

N
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[7) case_below: This is a sub-field of 1 bit and it is set to 1 for those

[8] string:

[9] dim_proc:

{10} undef:

record entries for which there is a CASE entry found as a

descendent of that record.

This is also a sub-field of 1 bit and it is set to indicate that

the entry is for a character string.

This one bit sub-field is set to 1 only when the dimen-
sionality for the entry has been correctly established.
Needed for dimensionality propagation. At the end of
parsing this bit is set only for those symbol table entries
which represents a data item that belongs to an input or
output file structure. After dimensionality propagation
phase, this bit is set for all the symbol table entries of all
the data items for which correct dimensionality can be
established by propagating dimensionality from those
fields which belongs to some input or output file struc-

tures.

This one bit sub-field is set to "1" whenever a file is
created before its definition is found in the user’s program.

This field is useful in semantic error reporting in the cases




[11] bek_ptr:

9. *range
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when "IN=>0OUT" or "OUT=>IN" is found in the

definition of the file.

This pointer is set to 1 to indicate that there is a RANGE
or LAST (or both) symbol table entry which has its
other_pointers field pointing to this entry. This information
is primarily used in the dimension propagation phase of

the EPL system to reduce the searching time.

This field contains a pointer to the range definition block in the RANGE table

that corresponds to the ranges of the symbol for which this entry is made. The

ranges of the symbol are found in the declaration of the data item for which the

entry is created. The data structure for range definition block is described later.

If the symbol is not subscripted then this field will contain NULL.

10. dimensionality

During parsing the symbol table entries of a data item that belongs to a file struc-

ture partially correct dimensionality value in this field (the value of the dimen-

sionality at this time is the value found in the user’s program) . At the end of
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parsing this field contains the correct dimensionality for data items that belongs to
some input or output file structure. The correé_t dimensionality is the sum of all
the declared dimensionalities ( as found in the user’s program ) of all the ances-

tors, and the declared dimensionality of the data item under consideration.

After the dimensionality propagation phase of the EPL system, the dimensionality
is propagated to all the other possible data items (on the basis of analysis of the
array graph ) starting from the data items for which dimensionality has been
correctly established during parsing, specifically the fields that belongs to input or

output file structure.

11. *other_pointers
The other_pointers field is used to store the following information :

a. If the symbol table entry is created for a sublinear subscript then this
field contains a pointer to the expression tree corresponding to the
expression that is associated with the declaration of the sublinear sub-

script.

b.  If the symbol table entry is created for a field of a display file then

this field contains a pointer to a character string which is the format of

L
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the data item as found in the declaration of the data item in the user’s
program.

If the symbol table entry is created for a symbol like "LAST",
"RANGE", "ADDRESS", or "PRESENT" then this field contains a
pointer to the symbol table entry which they qualify, which maybe an
entry for a field or group or in some cases which may be another entry

for "RANGE" or "ADDRESS".

If the symbol table entry is created for the symbol "CASE" (a new
such entry is created, each in the same bucket, every time "CASE" is
found in the declaration of a file in the user’s program), this field con-
tains a pointer to the Rec_case structure (described later) which keeps
track of all the different sub_structures mentioned in the user’s pro-
gram. In this case the interpretation of the record structure of the file
depends on the value of some expression (this expression appears after
the keyword "WHEN" in the user’s program and is evaluated each
time a new record is retrieved from the disk storage. It determines
which of the many alternative structures , each of which is preceded
by "WHEN" or "OTHER", are to be considered for breaking up the

chunk of information contained in the record being processed).
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12. *ptr_arr_gr

This field contains a pointer to the node in the array graph that corresponds to the
symbol whose entry is made. During the parsing this field contains NULL. This
field is appropriately filled when the array graph is built. This field is needed to

link the array graph nodes with the symbol table entries.

13. *vbl

This field contains a pointer to the structure "variable_block" (in the rangetab
file). During parsing this field is not filled. This field is used in the Range propa-

gation phase of the EPL system.

14. *next

This field points to the next entry in the bucket. If there is no more entry in the

bucket then it is NULL.
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2.1.2. Remarks
The symbol table contains all the symbols that appears in the compiled EPL pro-

gram. The symbols might be variable names, string constants, integer or real constants.

Each variable that belongs to DIRECT or PORT files will have two entries in the sym-

* bol table, if the file in which they belong to are declared both as input and output files.

In that case one entry will have the original variable name and the other will have that
name prefixed by "OUT_" . The I/O information of these two will differ. The entry
with the original variable name will have is_input flag set to 1 and is_output flag set to
0. For the other entry (the one prefixed by "OUT_") the is_input will contain 0 and
is_output flag will contain 1. Both of these entries will be found in the same bucket,

on the basis of the original variable name .

For variables that has been prefixed by ADDRESS, RANGE, LAST or PRESENT
a new entry of the same name is created in the symbol table which has its
other_pointers field pointing to the symbol table entry for that variable (this new entry
is created if there is no such entry already in the symbol table) . The is_input is_output
flag of this new entry is made equal to the variable that they are created for and the
type of use field of this new entry is set to reflect what kind of entry it is. For RANGE
and LAST, the file_type field will contain the number of repetition of it as found. In
the most complicated case of reference to a data item the other_pointers field of a

LAST entry may point to a RANGE entry, the other_pointers field of which may




=27 -

point to a ADDRESS entry, the other_pointers field of which may finally point to the
actual data item (the field of some file structure). If in a reference to a data item
"LAST." appears after some "RANGE." in the user’s program then "LAST." is
replaced by another "RANGE.". Such replacement does not change the value of the
prefixed variable. Furthermore, only one entry for "RANGE" with correct number of
count of repetition (of RANGE and LAST) is sufficient. This is not true if "LAST." is
the first prefix in the reference. In the later case entry for both "LAST" and
"RANGE" has to be made in the symbol table. Example 1 through 3 in this section
(shown later) shows all different cases that may arise. Example 3 is the most compli-

cated among them.

The major difficulty in creating symbol table entries and filling their different
fields is that the various attributes qualifying the symbol table entry (that are to be
used to fill in the different fields) can be found scattered (in any order) throughout the
user’s program. This flexibility is very much welcomed from the user’s point of view.
On the other hand this makes the parser much more complicated. For this reason some
fields of some symbol table entries are not filled before the end of the parsing phase.
Because of this flexibility in EPL grammar, in some cases even at the end of parsing it
is possible that some attributes of some of the symbols are not declared by the user

neither can they be inferred easily from other information in the user’s program.
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These places are left blank by the parser and they are to be filled by other phases of
the system after extensive post-parsing analysis. If' after analysis some vital informa-
tion still cannot be inferred from the user’s program, then an error will be reported by
the appropriate phase of the system. The attributes that fall in this category include
data type, range, dimensionality etc. Dimensionality field for declared variable is
filled during parsing with the dimensionality value found in the user’s program. They

are changed to the correct dimensionality at the end of parsing.

In the following pages the exact structure of the symbol table entries are given in

C source code.

2.1.3. Symbol Table Structure in "C"

Following is the structure of the symbol table definition in C. It is available in the

file ~epl/include/symbol_table.h in the system SEQUENT.

typedef struct Sym_tab_entry {  /* The structure of a single entry
of the symbol table. */
char *symbol_name; /* Pointer to the symbol name */
struct Sym_tab_entry *parent; /* Pointer to the entry of the parent */
struct Sym_tab_entry *old_child; /* Pointer to the entry of the oldest
child ¥/
union {
struct Sym_tab_entry *st;
struct St_ptr_list *1;} sibling;
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/* Pointer to the entry of the next sibling.
Pointer to a link list of names ,in
case this is an entry for sublinear
subscript. */
short type_of_use; /* ’type of use’ of the symbol:
0 = Means that the entry represents an
identifier that has not been declared
,has not been used as the target of
an assertion , and has not appeared
in an indexing expression.

1 = subscript
2 = field

3 = group

4 = record

S =file

6 = last

7 = present
8 = range

9 = The entry is for an undeclared
identifier that has been used as a
target of a assertion.

10= The entry is for an undeclared data
name that has been found to be the
target of an assertion.

11= Function

12= Address

14= Constant

15= CASE */

short file_type; /* type of file in which this symbol belongs
0 = sequential
1 = direct
2 = display
3 = port
4 = not known yet */

short type; /* type of the field:
-n = character (n)
0 = yet unknown or the entry is not for
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a field.
1 = short (integer)
2 = integer
3 = long (integer)
4 = real

5 = double (real)

6 = quad (real)

7 = logical.

8 = char (no size known yet) */

struct {
unsigned is_input : 1;  /* is the entry a part of an input file */
unsigned is_output: 1;  /* is the entry a part of an output file*/
unsigned others :2; /* indicate the type of subscript
sublinear = 1
non-sublinear = 0; OR
the porttype if the entry is for a symbol
which is a part of the port file

For porttype
0 =IN=> OUT
1 =0UT =>IN
2 = nothing said. */

unsigned rec :2;  /* to keep the following information about
the record type

0 = ordinary

1 = RECORD IN

2 = RECORD OUT */

unsigned case_key : 1;  /* This will be set only for those symbol
table entry which are used as the key
field for some CASE substructure */
unsigned local_sub: 1; /* This field is set only when the entry is
for a local subscript */
-unsigned case_below: 1; /* This field is set for the record entries
when there is a CASE entry found as a
descendent of that record entry */
unsigned string: 1; /* This field is needed to indicate
whether the entry is for a string
or for a integer or real or variable

-

e
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name */

unsigned dim_proc: 1;  /* This bit is used for dimensionality
propagation. When dimensionality of
this entry has been established this
bit will be set to 1 */

unsigned undef : 1; /* This bit is set to indicate that the
file (when IN=>OUT or OUT=> IN is found)
has been created though its definition is
not found as yet. */

unsigned bck_ptr: 1;  /* This pointer when set to 1 indicates that
there is a RANGE or LAST symbol table
entry that points to this entry. */

} io_flags;

struct Range_def_blk *range; /* Pointer to the range definition
block that corresponds to the
symbol */
short dimensionality; /* indicates the dimensionality of the symbol.
If the symbol is not subscripted then it
contains 0 */
union(
struct Rec_case *rc;
struct Eq_tree_node *eqt;
struct Sym_tab_entry *operand;
char *name;
int record_length;
int key_offset; } other_pointers;
/* Pointer to the head of the when expression
list in case CASE entry. Pointer from the LAST,
PRESENT,RANGE or ADDRESS entry to the variable.
pointer to the root of the expression tree
(for sublinear subscript entry)
pointer to the format string if it is an
entry for a field of a display. */
struct Arry_node *ptr_arr_gr, /* pointer to the corresponding
entry in the array graph */

/* pointer used during range propagation */
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union { /* and scheduling. 7}
struct Node_sub  *nodesub; /® node-sub for subscnpt entes */
struct Eq_tree_node ®i_o_uree. /* parse wee for Vo event schedubing  */
} range_sched_info.

union {
struct Eqt_node_list *node: /* A pointer to the list of equaton tree
nodes. */
struct Eq_tree_list ®eqL /* A pointer to a hist of equation tree
heads. */
} eqt_pm

struct Sym_tab_entry “next: /* pointer to the next symbol table entry ¢/
} Sym_tab_entry:

n.J
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_ 2.14. Codes used for Symbol table processing
The definitions of different codes used in the symbol table are listed below.

These definitions are used throughout the EPL system instead of the actual integer

codes for the convenience of the designers.

FILE TYPE INTEGER CODE
———
#define SEQ 0
#define DIRECTED 1
#define DISPLAY 2
#define PORT 3
Table 1 : Table. 1: The different file types used in EPL.
TYPE INTEGER
#define VOID 0
#define SHORT 1
#define INTEGER 2
#define  LONGINT 3
#define  REAL 4
#define DOUBLE 5
#define QUAD 6
#define LOGICAL 7
#define CHAR 8
#define ERROR 99

Table 2 : Table showing all the different types for variables allowed in EPL.
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USE INTEGER CODE
#define UNDEF0 0
#define  SUBSCRIPT 1
: #define  FIELD 2
q #define GROUP 3
#define RECORD 4
#define  FILE_ 5
#define LAST 6
h ‘ #define PRESENT 7
; #define RANGE 8
#define UNDEF9 9
#define UNDEF10 10
#define FUNCTION 11
#define  ADDRESS 12
#define  CASE 14
Table 3 : Table showing all possible types of symbol table entries.

2.1.5. Examples showing symbol table entries

In this section some examples are shown regarding the contents of the different
symbol table entries. At the end of the description of the Rec_case and Case struc-
tures more meaningful examples involving all of these structures has been shown. The

diagrams are included for clarity.

Example 1 For the equation

range.range(2).range.range.d = 8;

|9

the corresponding symbol table entry contains (Fig. 2)

o
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Entry is made for the symbol: RANGE
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Range

file type contains the integer §

type . integer

/O flags : 000 000000

Dimensionality : 0

Other_pointers points to the entry for D
Range : NULL

Example 2 For the equation

range.range(2).last.1ast(2).range.range.address.d = 5;

The corresponding symbol table entries are (Fig. 3):

Entry is made for the symbol: RANGE
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Range

file type contains the integer 8

type : integer

/O flags : 100 00000

Dimensionality : 0

Other_pointers points to the entry for ADDRESS
Range : NULL

Entry is made for the symbol: ADDRESS
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Address

file type : Sequential
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type : yet unknown or the entry is not for a field
/O flags : 100 00000

Dimensionality : 0

Other_pointers points to the entry for d

Range : NULL

Please note that in this case no separate entry for LAST has
been created since semantically the above equation is same as:

range(8).address.d = 5;

If LAST is the first item in the reference for a variable then
the entry for LAST will be created as in (Fig. 4):

last.last.last(5).range.range(2).last.last(2).range.range.address.d
= §;

The corresponding symbol table entries are :

Entry is made for the symbol: LAST

Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Last

file type contains the integer 7

type : yet unknown or the entry is not for a field
/O flags : 000 00000

Dimensionality : 0

Other_pointers points to the entry for RANGE
Range : NULL ﬂ

2.

Entry is made for the symbol: RANGE
Parent: NULL
oldest child : NULL ‘.’j

-




In the case of subscript we fill the type_of_use field with SUBSCRIPT and
the sibling field points to a list of variables that can use that subscript. The fol-

lowing example illustrates this point.

Example 4
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next sibling : NULL

type of use: Range

file type contains the integer 8

type : integer

I/O flags : 000 00000

Dimensionality : 0

Other_pointers points to the entry for ADDRESS
Range : NULL

Entry is made for the symbol: ADDRESS
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Address

file type : Sequential

type : yet unknown or the entry is not for a field
/O flags : 000 00000

Dimensionality : 0

Other_pointers points to the entry for d
Range : NULL

If we have the declarations as
input: outfile; out: outfile, dispfile; q

file: outfile (direct),
10 rec: our[*),

20 int: intf; ‘H
-1




subs: i of (our,I , WE, YOU);

Then the symbol table of subscript i will contain (Fig. 5) :

Entry is made for the symbol: i
Parent: NULL
oldest child : NULL
Sibling : next sibling points to the following list
OUT _our
our
I
WE
YOU
type of use: Subscript
file type : Sequential
type : yet unknown or the entry is not for a field
I/O flags : 000 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

It is to be noted here that OUT _our and our are both in the list because our

belongs to a DIRECT file which has been declared both as input and as output.

2.2. Rec_case and Case structures

Equational programming language permits vary flexible file structures. Different
records in a single file can be interpreted in different manners. This feature allows the

user to keep non-similar records, that are to be treated uniformly by the algorithm, in a
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single file. There may be various structures of these records, i.e., there may be many
different ways in which the chunk of bits in a record can be broken and interpreted by
the user’s program. To determine which of the many possible structures are to be used

for interpretation, there is a field in the record which is at a constant distance from the

| beginning of the record. The value of this field is used to determine the structure to

be used for interpretation.

Each different structure (more appropriately, this is a substructure ) is preceded
by the keyword "WHEN" (or it may be preceded by the keyword "OTHER", if it is
the last substructure in the list of alternative substructures ) in user’s program.
Immediately after "WHEN" is a binary expression that may involve the structure deter-
mining field mentioned above. If this binary expression is evaluated to the logical
value "true” for the record being processed then the record is to be interpreted of the
structure that follows the "WHEN". If there is more than one "WHEN" for which
binexp evaluates to "true” (in this case the semantic of the grammar is not strictly
defined) the first structure for which the binexp is "true" will be selected. If none of
the binary expression is "true” then the structure following the keyword "OTHER" (if
there is an alternative preceded by "OTHER") is selected for the interpretation of the
record being read. Again the semantic of the grammar is not well defined in this case

if there is no "OTHER" clause.
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During parsing we need to store all of these user supplied information in a con-
venient way. For this purpose two structures Rec_case and Case is used. Also a new

symbol table entry for the symbol "CASE" is to be used for this purpose.

Each time a new CASE is found in the source code while expanding the parse
tree for <declaration> a new symbol table entry for a group named CASE (thus CASE
is a reserved word) is created. The "other_pointers” field of this entry will point to the
structure "Rec_case” which has two fields as described below. In the Symbol Table
there may be many groups in the same file having the symbol name CASE , but that
will not cause any referencing problem, because the user will never refer to any vari-

able using the symbol name CASE.

1. st This field contains a pointer to the symbol table entry for the symbol
that appears in parenthesis right after "CASE" in the source code.
This is the field name in the record which is at a fixed distance (in
terms of bytes) from the beginning of the record and which deter-
mines how the information contained in the record being read from

the disk storage are to be interpreted.

2. ptr This field contains a pointer to the head of the link list of "Case"

structures (described below). For each "WHEN" in the source code
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(which defines a new alternative substructure) a new "Case" struc-
ture is created. A "Case" structure contains all the relevant informa-

tion for a "WHEN" declaration.

A "Case" structure contains four fields:

For each WHEN a "Case" structure is created where the contents of the different fields

are

eq: This field contains a pointer to the equation tree node whose label is
"case_rec” (described in the equation tree description) and whose
right son points to the root of the “"expression"” tree that corresponds
to the expression right after WHEN. This is the expression which is
to be tested, each time a new record is read from the disk storage,
to determine whether this substructure should be selected for break-

ing the information in the record read in a meaningful way.

st : This field contains a pointer to the symbol table entry for the first
symbol (this is like a "oldest_child") that appears after WHEN. The
substructure that is associated with the "WHEN" declaration being

represented by this "Case" structure is pointed to by this field.
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Associated with each of the "WHEN" declaration there must be a
sublinear subscript. This sublinear subscript is used for indexing
through the same type of records (that is, records that are to be
interpreted in the same manner, in other words records that are to be
broken into different logical parts using the same substructure -- the
substructure that is being defined by the "WHEN" expression under
consideration) in the file being read. This field contains a pointer to
the symbol table entry of this sublinear subscript and in the user’s
program this sublinear subscript is to be found within the current

WHEN clause.

In the declaration there may be many "WHEN" clauses. All of the
"WHEN" clauses that are under the same "CASE" are all to be
found in a single link list. This field contains a pointer to the next
"Case" structure that corresponds to the next "WHEN" clause after
the current one. If this is the last "WHEN" clause (representing the

last alternative for interpretation), then this field contains NULL.

The substructure followed by "OTHER" is treated uniformly as

"WHEN". But in this case there is no equation tree. In this case the




right son of the "case_rec" equation tree node points to NULL.

2.2.1. Definition of Rec_case and Case structures in "C"

The definition of Case and Rec_Case structures in C is shown below. These
definitions are available in the file “epl/include/defn.h file in the system sequent.
typedef struct Case {

struct equation_tree_node *eq;

struct SYM_TAB_ENTRY *st;
struct SYM_TAB_ENTRY *sublinear;

struct Case *next;
b

typedef struct Rec_case({
struct SYM_TAB_ENTRY *st;
struct Case *ptr; };

2.2.2. Examples

In this section some examples are shown that illustrates the contents of the sym-
bol table in different situations. In the beginning some examples are given that
involves simple file structures. At the end of this section a more complicated example
has b;aen given which involves declaration of a file using CASE to select from alterna-

tive substructures.




Example 1 In this example a simple file structure is considered. The file struc-

ture is as follows :

file:a,
1 rec : b[*},
2 group: ¢S},
3int: d;

Nothing is mentioned about the I/O status of the file (The I/O definition may be

available at a later stage of parsing).

The content of the symbol table entries for each of the data items in this file
structure is given below. Fig. 6 depicts the file structure that is embedded in the sym-
bol table.

Entry is made for the symbol: a
Parent: NULL

Oldest child : b

next sibling : NULL

type of use: File

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 000 00000
Dimensionality : 0
Other_pointers is NULL

Range : NULL

Entry is made for the symbol: b
Parent : a

Oldest child : ¢

next sibling : NULL

type of use: Record

file type : Sequential
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! type : yet unknown or the entry is not for a field
' I/O flags : 000 00000

Dimensionality : 1

Other_pointers is NULL

Entry is made for the symbol: ¢

Parent : b

Oldest child : d

next sibling : NULL

type of use: Group

file type : Sequential

type : yet unknown or the entry is not for a field
I/0O flags : 000 00000

Dimensionality : 1

Other_pointers is NULL

Range : Following are the ranges defined --
is_static: 1, ceiling: 5, type

Entry is made for the symbol: d
Parent : ¢

Oldest child : NULL

next sibling : NULL

type of use: Field

file type : Sequential

type : integer

I/O flags : 000 00000
Dimensionality : 0
Other_pointers is NULL

Range : NULL 1

B

Example 2




- 46 -

This example shows the content of the symbol table (relevant portions) in the
case of a PORT file. Though user has declared only one file, in this case in the sym-
bol table there will be two different file structures. The file declaration is divided into
two different files for PORT files which are of the type "IN => OUT" or "OUT =>
IN". In these two cases the PORT file is declared both as "input" and as "output".
After breaking up the file two file structures are created. One of them is treated as
"input" file the other one is treated as "output"” file. In the declaration of these type of
file there are always exactly two record definitions. One of them is “record in" the
other one is "record out". the "input" file is given the "record in" record and the "out-
put” file is given the "record out" record. The "input" file retains the same name as
that of the original file (as declared by the user), the "output" file along with all the
data items that belongs to the "output" file have their name changed to another name
which is obtained by prefixing "OUT_" to their original name. The DIRECT files
which are declared as "input" as well as "output" are also treated in the same manner.
Only difference is that both the file in the case of DIRECT file have identical file
structure. The naming convention for the two files created are same for DIRECT file
and PORT file. If the PORT file is not any of these types then the file will not be bro-

ken.

The example uses the following file declaration

.
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file: inmes (port in=>out),
10 rec in : inrec,
20 int: start,stop,
10 rec out : outrec,
20 int: res;

The relevant symbol table entries are as follow (figure 7 shows the structures of

the files) :

Entry is made for the symbol: INMES
Parent: NULL

Oldest child : INREC

next sibling : NULL

type of use: File

file type : Port

type : yet unknown or the entry is not for a field
/O flags : 100 000000

Dimensionality : 0

Other_pointers is NULL

Range : NULL

Eqt_ptr : NULL

Entry is made for the symbol: INREC
Parent : INMES

Oldest child : START

next sibling : NULL

type of use: Record

file type : Port

type : yet unknown or the entry is not for a field
/O flags : 100 100000

Dimensionality : 0

Other_pointers is NULL

Range : NULL

Eqt_ptr : NULL
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Entry is made for the symbol: START
Parent : INREC

oldest child : NULL

p Next sibling : STOP
type of use: Field

file type : Port

type : integer

I/O flags : 100 000000
Dimensionality : 0
Other_pointers is NULL
Range : NULL
Eqt_pr: NULL

Entry is made for the symbol: STOP
Parent : INREC

oldest child : NULL
next sibling : NULL
type of use: Field

file type : Port

type : integer

I/O flags : 100 000000
Dimensionality : 0
Other_pointers is NULL
Range : NULL
Eqt_pr: NULL

Entry is made for the symbol: OUT_INMES

Parent: NULL

Oldest child : OUT_OUTREC

next sibling : NULL

type of use: File

file type : Port

type : yet unknown or the entry is not for a field
I/O flags : 010 000000

Dimensionality : 0

Other_pointers is NULL
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. Range : NULL
Eqt pr: NULL

Entry is made for the symbol: OUT_OUTREC
Parent : OUT_INMES
_ : Oldest child : OUT_RES
. next sibling : NULL
type of use: Record
file type : Port
type : yet unknown or the entry is not for a field
I/O flags : 010 200000
Dimensionality : 0
Other_pointers is NULL
Range : NULL
Eqt_ptr: NULL

Entry is made for the symbol: OUT_RES
Parent : OUT_OUTREC

oldest child : NULL

next sibling : NULL

type of use: Field

file type : Port

type : integer

I/O flags : 010 000000

Dimensionality : 0

Other_pointers is NULL

Range : NULL

Eqt_ptr points to the equation tree node: 0X22380

Example 3

For a more complicated example using "CASE" in the declaration of file struc-
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H tures the following example is used.

The file is declared as follows :

l FILE : geometry_file (SEQ),
5 RECORD : geometric[* <= 500],
10 CHAR(9) : name,
i 10 LOGICAL : color,
10 CASE (name)
WHEN "point":

15 REAL : xp,
SUBLINEAR sub_point
WHEN "“plane”:

15 GROUP : XX[3],

20 REAL : xpl,
15 GROUP : YY[3],
20 REAL : ypl,
SUBLINEAR sub_plane,
10 CASE (color)
WHEN TRUE :

15 INT : hue,

SUBLINEAR sub_color;

The corresponding symbol table entries and the equation trees pointed to by the
other_pointers of the sublinear subscript entries are as follows (Fig. 8 shows the struc-

ture of the symbol table along with the Rec_case and Case structures for this example)

Entry is made for the symbol: geometric_file
Parent: NULL

Oldest child : geometric

next sibling : NULL

1P

. J
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type of use: File

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 100 00000

Dimensionality : 0

Other_pointers is NULL

Range : NULL

Entry is made for the symbol: geometric

Parent : geometry_file

Oldest child : name

next sibling : NULL

type of use: Record

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 100 00010

Dimensionality : 1

Other_pointers is NULL

Entry is made for the symbol: CASE

Parent: geometric

oldest child : NULL

next sibling : CASE

type of use: Undef 0

file type : Sequential

type : yet unknown or the entry is not for a field
I/0 flags : 100 01000

Dimensionality : 0

Other_pointers points to the rec_case entry for name
Range : NULL

Entry is made for the symbol: name
Parent : geometric
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oldest child : NULL
Next sibling : color

- type of use: Field

L file type : Sequential

l ) type : char(9)

i I/O flags : 100 00000
Dimensionality : 1
Other_pointers is NULL
. Range : NULL

f Entry is made for the symbol: CASE

Parent: geometric

! oldest child : NULL

next sibling : NULL

type of use: Undef 0

file type : Sequential

type : yet unknown or the entry is not for a field
I/0 flags : 100 01000

Dimensionality : 0

Other_pointers points to the rec_case entry for color
Range : NULL

Entry is made for the symbol: color
Parent : geometric
oldest child : NULL
Next sibling : CASE
type of use: Field

file type : Sequential
type : logical

I/O flags : 100 00000
Dimensionality : 1
Other_pointers is NULL
Range : NULL

=
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Entry is made for the symbol: point
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Undef 9

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 000 00000
Dimensionality : 0

Other_pointers is NULL

Range : NULL

Entry is made for the symbol: xp
Parent : CASE

oldest child : NULL
next sibling : NULL
type of use: Field

file type : Sequential
type : real

I/O flags : 100 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

Entry is made for the symbol: sub_point

Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Subscript

file type : Sequential

type : yet unknown or the entry is not for a field
/O flags : 000 00000

Dimensionality : 0

Other pointers points to the equation tree head: 0X1E160
Range : NULL
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Entry is made for the symbol: plane
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Undef 9

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 000 00000
Dimensionality : 0

Other_pointers is NULL

Range : NULL

Entry is made for the symbol: XX

Parent: NULL

Oldest child : xpl

Next sibling : YY

type of use: Group

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 100 00000

Dimensionality : 1

Other_pointers is NULL

Range : Following are the ranges defined --
is_static: 1, ceiling: 3, type

Entry is made for the symbol: xpl
Parent : XX

oldest child : NULL

next sibling : NULL

type of use: Field

file type : Sequential

type : real

I/O flags : 100 00000
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Dimensionality : 0
Other_pointers is NULL
Range : NULL

Entry is made for the symbol: YY

Parent: NULL

Oldest child : ypl

next sibling : NULL

type of use: Group

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 100 00000

Dimensionality : 1

Other_pointers is NULL

Range : Following are the ranges defined --
is_static: 1, ceiling: 3, type

Entry is made for the symbol: ypl
Parent : YY

oldest child : NULL
next sibling : NULL
type of use: Field

file type : Sequential
type : real

/O flags : 100 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

Entry is made for the symbol: sub_plane
Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Subscript
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file type : Sequential

type : yet unknown or the entry is not for a field

I/0 flags : 000 00000 ‘
Dimensionality : 0

Other pointers points to the equation tree head: 0X1E200
Range : NULL

Entry is made for the symbol: TRUE
Parent: NULL

oldest child : NULL
next sibling : NULL
type of use: Undef 0
file type : Sequential
type : logical

I/O flags : 000 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

Entry is made for the symbol: sub_color

Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Subscript

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 000 00000

Dimensionality : 0

Other pointers points to the equation tree head: 0X1E320
Range : NULL

Entry is made for the symbol: hue
Parent : CASE
oldest child : NULL




ﬁ next sibling : NULL
type of use: Field

file type : Sequential
type : integer

I/O flags : 100 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

* The equation trees that are being pointed to by the other_pointers field in the
symbol table entries for the sublinear subscript entries are as follows:

Following are the sublinear subscripts found in the specification

Name of the sublinear subscript: sub_color
The other_pointers points to the following equation tree:

addr- O0X1E320, label-
parent- 0X21100, type-

<literal>, left-
void, cnvrt-  void

TRUE, right- 0,

Name of the sublinear subscript: sub_plane
The other_pointers points to the following equation tree:

addr- 0X1E200, label- <variable>, left-  plane, right- 0,
parent- O0X1E600, type- void, cnvrt-  void
Name of the sublinear subscript: sub_point

The other_pointers points to the following equation tree:

addr-
parent-

0X1E160, label-
0X1E600, type-

<variable>, left-
void, cnvrt- void

point, right-
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2.3. Equation Trees

2.3.1. General Structure

The equation trees generated by the parser are teh linked lists of equation tree

roots with a scalar pointer variable indicating the first tree on the list. The equation

trees on this list will be made up of a collection of tree nodes connected together as a

binary tree. The logical structure of a single tree node is described below.

The fields of this structure are defined as follows:

label :

left :

right :

The "label” field will be used to indicate what semantic entity the
node represents. The field will be an integer and the semantic enti-
ties are assigned specific codes, given in table two, to be used in this

field.

The field labeled "left" will be a pointer to the left child of the equa-
tion tree node. The pointer can be a pointer to another tree node, a

pointer to a symbol table entry, or it can be nil.

The "right” field will be a pointer to the right child of the node. The
right child of an equation tree node will always be another equation

tree node or nil.

®_

g




parent :

type :

convert_from :
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A pointer 10 the parent of each node will be recorded in the “parent”
field. The <assertion> node will have a pointer to the tree list node
which points directly to it. The <sublin> node will have a pointer to
the symbol table entry for the sublinear subscript that the tree is a
conditon of. The <case_rec> node will have a pointer to the sym-
bol table entry for the record name that the case expression is a con-

didon of.

The “"type” field will indicate the data type of the expression or
literal that the node represents. The values that can be entered in
this field are the integer encodings of the EPL data types plus codes
to indicate when an error has been encountered during data type pro-
pagation. Initially this field will be zero for all nodes. The data

type encodings are given in table one.

The "convert_from" field will be used to alert the code generator
that the expression or literal represented by the node must be con-
verted from some type indicated by this field to the type indicated
by the field previously described. Initially this field will be zero for
all nodes. During type checking the value of "type" and

"convert_from" will be changed whenever necessary to reflect type

.
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The logical structure for the nodes used to hold individual equation trees in the
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conversion necessary for expression evaluation.

list of equation tress is described below.

The fields of this structure are defined as follows:

tree

is_range :

target :

multi_def :

assertion :

The "tree” field is a pointer to the root of the equation tree that the

node links in the list.

If the variable defined by the assertion(s) is a "RANGE" prefixed
item, then the "is_range" flag will be set to true to denote this fact.

For normal variables "is_range" is always false.

A pointer to the symbol table entry for the variable defined by the

assertion is loaded into the "target” field of the structure.

If some variable or range is specified as the target of more than one
assertion, all definitions of the quantity after the first will be linked
to the first definition through the "multi_def” pointer field. Dupli-

cate definitions will not appear in the main equation tree list.

The relative position of the assertion within the source file will be




used to mark the assertion when identifying error and warning mes-

sages to the user.

next : The pointer to the next tree in the list of trees will be held in "next.”

An empty "next" pointer indicates the end of the list.

n.J
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The definition of the tree nodes, linked list nodes and the linked list head pointer

will be as follows:

typedef struct Eq_tree_node { /* binary tree node template */
short label; /* type of node */
union {
Sym_tab_entry *symbol; /* For child from symtab */
struct Eq_tree_node *tree; f* for child that is tree  */

} left; /* left child pointer */
struct Eq_tree_node *right; /* right child pointer */
union {

struct Eq_tree_node *tree; /* for normal parent */

struct Eq_tree_list *list; /* for parent of <assertion> */

Sym_tab_entry *symbol; /* for parent of <sublin>
or <case_rec> */

} parent; /* parent pointer */
short type; /* arithmetic type of result */
short covrt_from; /* type to convert from */

} Eq_tree_node;

typedef struct Eq_tree_list { /* node to hold tree in list */

Eq_tree_node *tree; /* pointer to head of tree  */
short is_range:1;, /* flag for range definition */
Sym_tab_entry *target; /* entity defined */
struct Eq_tree_list *multi_def; /* multiple defintion chain */
short assertion; /* assertion label */
struct Eq_tree_list *next; /* next node in list */

) Eq_tree_list;

extern Eq_tree_list *equation_trees;
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LABEL INTEGER CODE
#define  ASSERTION 3
#define SUBLIN 4
#define CASE_REC 5
#define IF_EXP 6
#define IF_ACTION 9
#define CASE_EXP 12
#define WHEN_TEST 15
#define 'WHEN_ACTION 18
#define OTHER_ACTION 21
#define VARIABLE 24
#define INDEX 27
#define BINARY_OR 33
#define BINARY_AND 34
#define BINARY_EQ 35
#define BINARY_NE 36
#define BINARY_GE 37
#define BINARY LE 38
#define BINARY _GT 39
#define BINARY LT 40
#define BINARY_CONCAT 41
#define BINARY_PLUS 42
#define BINARY_MINUS 43
#define BINARY_TIMES 44
#define BINARY_DIVIDE 45
#define BINARY_POWER 46
#define UNARY_PLUS 51
#define UNARY_MINUS 52
#define UNARY_NOT 53
#define FCALL 60
#define PARMS 63
#define LITERAL 66
#define SUB 69
Table 4 :

Table showing the integer codes used to label equation tree nodes.

19

4
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2.32. Node Label Definitions
The labels for the various nodes that the equation trees will be constructed from

are defined as follows.

<assertuon>
<variable> <expression>

<expression> ::= <if_exp> | <case_exp> | <binexp>

The BNF-like notation above is intended to indicate that the symbol <expression>

is actually a generic form for any expression, including if-then constructs, case con-

structs, or simple expressions.

<sublin>

7N\

nil <expression>

<case_rec>

7N

<binexp>
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The <assertion> node will be used to link assertions into the equation tree list.
The <sublin> and <case_rec> nodes will be used to link sublinear subscript expres-
sions and record level case expressions into the symbol table. When the trees are
being scanned from the bottom up, these three node types will indicate what type of
parent the mcé has so that information can be drawn from the equation tree header

block or symbol table entry when necessary.

<if_exp>

7\

<binexp> <if_acton>

<if_action>

/N

<expression> [<expression>]

The <expression> on the left is evaluated if the <binexp> of the parent <if_exp>
is true. If the right <expression> pointer is not nil this expression is evaluated if the

<binexp> of the parent <if_exp> is false.

Note that there is no unique node for ELSEIF. Since many languages do not pro-

vide an "elseif” clause for their "if-else” constructs it is best to convert the "if-else-

A"

—d




N ag

- 69 -

endif” into nested "if"’s at the time the source program is parsed to reduce the work in

code generation and specification analysis.

<case_exp>
/ \
<variable> <when_test> <when_action>
/ \
<when_test> <binexp> <binexp>
/ \
<when_action> [<when_test> | <other_action>]

The <binexp> on the left is the case-expression that is to be tested for "<vari-
able> == <binexp>.” The <binexp> on the right is the expression that is to be

evaluated if the above test is true.

<other_action>

RN

ril <binexp>

The <binexp> on the right is the expression to be evaluated if all previous case

expressions were false. The <binexp> is placed on the right and the left link remains
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nil for the sake of consistency with <when_action>.
<binexp> ::= <variable> | <binary b | <binary_&> | <binary_==> | <binary_!=>|
<binary_>=> | <binary_<=> | <binary_>> | <binary_<> |
<binary b | <binary_+> | <binary_-> | <binary *> |
<binary /> | <binary_**>{ <unary_+> | <unary_->|
<unary_"> | <fcall> | <literal> | <SUB>

<vanable>
name (<index>]

Where "name" is a pointer to the symbol table entry for the name referenced.

<index>

7N\

<binexp> [<index>]

The generic form for binary and unary expressions will be as follows:

<binary_x>

N\

<binexp> <binexp>

<unary_x>

I

<binexp>

I\ .

n.J4




The <binexp> is placed on the right to allow the same in-order traversal to be

used for both binary and unary sub-trees.

<fcall>

N

[<parms>]

<parms>

/N

<binexp> [<parms>|

<literal>

N

(TRUEFALSEPROCIDinummumstnng) nil
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<SUB>
name [<index>]

All variables that are found to be subscripts during analysis will be converted to
<SUB> nodes and reinserted in the tree. The keywords SUBO through SUB9 (if used
in the user’s program) will appear in the symbol table suffixed by an underscore fol-
lowed by the equation number in which it is used (for example, if SUBS is used in the
equation number 4 then its symbol table entry will be SUB5_4). By making this
change it is made sure that the different use of the same SUBO (or other SUB) will

have seperate entries, so the equation tree will point to the correct reference.

|®
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L. The codes that will be loaded into the "label” field of the equation tree nodes are
3 . defined in the following table. Note that code numbers are sparsely assigned so that

_: future enhancements to the language can be inserted into the table in logical locations.
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Type value
<assertion> 3
<sublin> 4
<case_rec> 5
<if_exp> 6
<if_action> 9
<case_exp> 12
<when_test> 15
<when_action> 18
<other_action> 21
<variable> 24
<index> 27
<binary b 33
<binary_&> 34
<binary_==> 35
<binary_!=> 36
<binary_>=> 37
<binary_<=> 38
<binary_>> 39
<binary_< 40
<binary b 41
<binary_+> 42
<binary_-> 43
<binary_*> 4
<binary_/> 45
<binary_**> 46
<unary_+> 51
<unary_-> 52
<unary_"> 53
<feall> 60
<parms> 63
<literal> 66
<SUB> 69

Table 5: Table showing the integer codes used for different equation tree nodes.

@
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2.4. Range Table

2.4.1. General Structure

In our attempt to develop consistent range specifications from the program written
by the user there will be three major phases. The first phase will take place at the
time the user’s specification is parsed as we draw from the user’s declarations as much
information as we can regarding the structures defined by the user. The second phase
begins while we are constructing the array graph, as we mark the nodes in the array
graph with the subscript and range information that can be inferred from the user’s
equatons. Once the nodes in the array graph have all been set in place and decorated
with the range information obtained from the assertions, range propagation procedures
will begin combining all the information gathered into sets of ranges that are required

to execute the user’s program.

To fulfill the requirements of the first phase, we will make definition blocks that
can be pointed to by any structure in the symbol table that is declared with ranges, or
any structure that is not declared but is discovered to have ranges during dimension
propagation. Definition blocks will be linked together in a list with the head of the list
being a pointer in the symbol table for an entry that has ranges. Blocks will be placed
in the list in the same order that they are declared, with the leftmost range of an entity
being the first range on the list. Each block will have fields containing information

found at compile time, as well as fields that are intended to be filled during later
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analysis and optimization phases.

Another set of range definition blocks will be constructed later, after range propa-
gation is complete. For each range set that is formed for the specification, a single
range definition block will be created. This block will be pointed to by the
"def_list.rdb" pointer in the range set header structure (described below). The block
will contain all information relevant to the range, including all dynamic definitions and

the single ceiling that pertains to all subscripts indexing the range.

The logical structure for a range definition block is given below.

The fields of this structure are defined as follows:

def : The first field in the structure will be a pointer to the head of a pos-
sible list of dynamic definition blocks (described below) that apply
to the range in question. The "def” field will not be filled until the
initial phases of range propagation associate RANGE assertions and
end-of-file items with the ranges that they define. If, after range
propagation, the “def” field is nil, the range has no dynamic

definitions.

sub_name : The "sub name" field is a field that is provided for use in the code

7S




b

[

is_static :

ceiling :

' window :
type :
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generation phase for holding temporary subscript names that apply to
ranges. This field will not be loaded with any meaningful data until

code generation begins.

If the user defined the range as having an explicit upper bound, the
range is considered static and the "is_static" flag is set to true. If
the range was defined by an asterisk, or an asterisk and an upper
limit, the dimension is considered dynamic and the "is_static" flag is

set to false.

Whenever a numeric bound is defined for a range the "ceiling” field
will contain the value of that bound. If the range has neither a static

bound nor a dynamic bound the value of this field will be zero.

If the optimization phase of translation windows a dimension it will

load the length of the window into the "window" field. The "win-
dow" field will only be meaningful if the value of the "type" field

(described below) is 'W.’

Once optimization is complete, the "type” field for each dimension
will hold a single character constant indicating what degree of

static/dynamic character the range has. The value 'P’ will indicate a




range_set :

next :
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physical dimension, 'V’ will indicate a virtual dimension and 'W’
will indicate that the dimension has been windowed. If the range is
windowed, the window length will be loaded into the "window"
field. The "type" field will be loaded with a blank when the block is

initially constructed.

To allow easy access to the range set that any range definition block
is a member of, the "range_set" pointer will be used. This pointer
will be nil initially, and range propagation will load it with a mean-

ingful value once the range sets are created.

The next range definition block in the linked list of range definition
blocks attached to a symbol table entry will be pointed to by the
"next" field. If the field is empty the list ends. This field will
always be empty when the block is used as the common block for a

range definition at the close of range propagation.
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3. ALGORITHMS FOR LEXICAL ANALYSIS

3.1. The Objective

The lexical analysis is the first phase of the EPL system. As mentioned before,
the purpose of this phase is to break the input stream of characters (i.e., the user-
specification into a stream of tokens. By doing this we reduce the volume of informa-
tion processing required by the later phases of the translator. This phase works interac-
tively with the parser. Each time parser needs another token for building the parse tree
it calls the lexical analyzer, which in turn absorbs some of the characters from the
input stream (keeping a pointer, to indicate where to start reading, in the input stream
next time it is called by the parser) and returns the token that causes the largest
number of characters to be absorbed from the input stream. To be more specific, in
cases when the characters at the top of the input stream can produce more than one
token the decision is made in favor of the token that corresponds to the largest number
of input characters. If there are more than one token that corresponds to the largest
number of input characters then the token that is defined earlier among these are

chosen.

For the lexical analysis purpose LEX has been used. Since there are some

features in the grammar of EPL that causes the grammar not to belong to LALR (1),
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’ | some tricks has been used through the lexical analyzer to resolve this problem (since
we are using YACC for parsing, we need to have our grammar in LALR (1) ). The
parser is confused when faced with ’,” in a few places (i.e., it has more than one alter-

native to proceed with parsing). For that reason lookahead is done for °,” so that

different tokens are supplied to the parser in these situations. Following is the LEX

“ specification for the EPL system.
k 3.2. The LEX specification.
%

#include <stdio.h>

extern FILE *yyin;
static int line=1;
int i;

%)

%START format imply ordinary

letter [A-Za-z]
digit [0-9]
space [ 0]
comment "/*"(" PR AL R U YRR R [ |

" ot

comma ","({ space }l{comment})*

A [Aa]
B [Bb]

C [Cc] g
D [Dd]
E [Ee]
F [Ff}

G [Gg]

|
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H [Hh]
I [1]
Il

K [KK]
L (L1
M [Mm]
N {Nn]
O [Oo]

-~ P [Pp]

Q [Qq)
R [Rr]

S [Ss]

T [Ty]

U [Uu]
V [Vv]
W [Ww]
X [Xx]
Y [Yy]
Z [Zz2]

%p 9999
%a 4000

%%
%" { return(’;’);}
" { return(’:’);}
{comma} (SHUJ{(BHLHI}(N}({E}{A}{R})?{space} {
return(_COM_SUBL); }
{comma}/{digit} {
return( COMMA_BEFORE_INUM); )
return(’,’); }
return(’(*);}
return(’}’); )
return(’(’); }
return(’)’); }
{ return(T);}
( rewurn(’&’);)
{ return(”’);)

—— p—— p——— gt P

[

]

(
oy
!

&
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"+' { return(’+’);}
" { return(’/’); )

" { rewmn(-");)

" rewm(*); )

"=" { return(’=’"); }

" { rem(’.)))

"a*" ( return( POWER);}

“I" { return( CONCAT);}
<imply>"=>" ( return(_IMPLY);}
<imply>"<=" { return(_REV_IMPLY);}
<format>"E" { return(’E’);}

{(PH{R}IOHCIUE}S}HSH? { return(_PROCESS);}
(FHUJNMHCY(THIHO}N)? { return(_FUNCTION);}
(SHEHQI{UHENNHTHII(A}LD?  ( return(_SEQUENTIAL);}
(T} {N)/({space})*"." { return(_IN);}
(OHUHT)/({space)*"." { retun(_OUT);}
(IH{N}(PHUHTYH? { return(_INPUT);}
{(OHUHTI(PHUHTH? { return( OUTPUT);)
(DHIHRHE}C}(T) { return(_DIRECT);}
{P}{O}(R}{T} { return(_PORT);)
(DHIHSHPI{L}{A}(Y))? { return(_DISPLAY);}
{A}{D}(D}HR}({E}(SHSH? { retum(_ADDRESS);}
{(FHIHL}E} ( return(_FILE);}
(WHH)}{E}{N} { return( WHEN); )
{(GHR}({OHUD?P} { return( GROUP); }
(RHEHC)((O}{R}{D})? ( return( RECORD);}
{(D}{OHUDH?BHL}IUE}))? ( return(_DOUBLE);}
(IHNHTI{E}GHE}R))? { return(_INTEGER);)
(C}H{H}{A}(R) { return(_CHARY); }
(S}H{H}{OHR}T} { return(_SHORT); }
(LY{O}{N}{G} { return(_LONG); }
{QH{U){A}{D) { return( QUAD); )
(LHOHGHINHCI{AHLY? { return(_LOGICAL);}
(SHUNBHLMI}N}{E} (A} (R})? { return(_SUBLINEARY); }
(RHEHA}{L) { return( REAL); }
(SHUNBI{S}UC}(R}{T}{PHT})? { return(_SUBSCRIPT); }
(CHANSHE) ( return(_CASE); )




(OHTH(H}(E}R}{S)
(R}{AHN}{G}(E}
(THH}{E}{N}
(EHLHSHE])
{EHN}{DHI}{F}
{(E}(LH{SIU{EDNUI}(F)
(THRHUHE)
(FHA}L}{SHE)}
(PHRHOHCHNUI}{D)
- {LHAHSHT)
(PHRHENSHE}NHT}
{O}{F)

{IH{F}

(S}{U}(B}{digit}

{letter} ({letter Ji{ digit}l' ")*

({digit})+

(">="I'=>")
("=<""'<=")

(="
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{ return(_OTHERS);)
{ return(_ RANGE); }
{ return(_THEN); }
( return (_ELSE); }
{ return(_ENDIF); )
{ return(_ELSEIF); }
{ return(_TRUE); }
{ return(_FALSE); )
{ return(_PROCID); }
{ return(_LAST); }
{ return(_ PRESENT); }
{ return(_OF); }
{ return(_IF); }

{ /* local subscript */
Set the global variable "name” to _SUB
followed by the digit, followed by
underscore, followed by the equation
number in which it is found.
return(_SUB); }

{/* valid symbol */

Change all the letters in the array
"private_copy"” to capital letters.
return( NAME);

(/* integer constant */
Set global array "inum_copy" to the
string for the integer.
return(_INUM); }

{ yylval.inum = 0;
return (_RELOP); }

{ yylvalinum = 1;
return(_RELOP); }

( yylvalinum = 2;
return(_RELOP); }

{ yylvalinum = 3;
return(_ RELOP); }
{ yylvalinum = 4;
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return(_RELOP); }
n<|0 { yylval-inum = 5; ‘
return(_RELOP); } '

<ordinary>((({digit) }+("." {digit) )N ((digit})*("."(digit}+))("E"("+T-")?(digit} +)?
{
/* real constant */
yylval.st = (struct Sym_tab_entry *)install(yytext,0);
return(_RNUM); }

(I A b { /* string constant */
Create appropriate symbol table entry for the
string, if it is not already created.
return(_STRING); }

(e as{ewte ] yatenkrs (% Do Nothing for the Comment */ )

"0 line++; { /* increment line number */}

(1 {/* ignore white spaces */}

%%
»
L
o
!‘




4. ALGORITHMS FOR SYNTAX ANALYZER

4.1. The Objective

The objective of the syntax analyzer is to parse the user’s program using the EPL
grammar. If at the time of parsing any syntax error is found it is reported to the user
along with useful error diagnostics. The parser does not abort the processing in the
event of syntax error. It does error recovery and proceeds to parse the rest of the
user’s program, so that more syntax errors can be reported. This reduces the number of
time the user needs to recompile to rectify all the syntax error. If any syntax error is
found then the parser returns '0’ to the calling program (the main routine of the EPL
system) to indicate that the processing of the latter phases need not be initiated. If
there is no syntax error found in the user’s program then the parser returns "1’ to the
calling program to indicate that the parsing has been done successfully, so the later

phases of the system should be initiated.

Besides checking for the syntax errors the parser also builds many of the neces-
sary global data structures which are to be used and modified appropriately by
different parts of the EPL system. The two most important data structures that are built
by the parser are the symbol table and the equation tree. The description of these two
data structures has been given already in the preceding sections. Some parts of some

of these data structures may not be filled during parsing, because of insufficient infor-
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mation available in the user’s program at the time of parsing. If the information can be
inferred from other information in the user’s program then in some later phase of the
EPL system, by extensive analysis, these attributes are determined and appropriate
places in the data structures are filled. Some examples of these kind of attributes are
data types, dimensions , etc. As mentioned before, EPL grammar allows the user to
use a data item without defining it. In the data type propagation phase of the EPL sys-
tem the type of these undeclared data items are determined (if possible) and the data
type fields of the symbol table entries for these data items are filled in. The dimensions
of many data items also can be left unspecified in an EPL program. The dimensional-
ity propagation phase of the EPL system propagates the dimension from the data items

for which the dimension is known to those for which it is not known.

Besides symbol table and equation trees, the other important global data structures
built by the syntax analyzer which are used by some later phase of the EPL system
includes the Case structures, the Rec_case structures, the range definition blocks , list
of data items that has appeared as fields of some input or output file structures, list of
files defined in the user’s program, list of sublinear subscripts and the module struc-

ture.

The range definition block, Case structure and Rec_case structure has already

been described in detail in an earlier section. List of data items that has appeared as

.




fields of some input or output file structure is required for the dimension propagation
phase. The dimension propagation starts from this list, because everything in this list
has their dimension correctly defined in the user’s program (otherwise it is a semantic
error). The dimension of all the other data items are established from these data items.
The global pointer "io_list" points to the head of this list. The global pointer
"top_files" points to the list of pointers to the symbol table entries that corresponds to
the files declared in the user’s program. The global pointer “top_subl_Ist" points to
the list of sublinear lists. The module structure contains the information regarding the
program module that are needed for outside communication, especially by the
configurator system. The module structure keeps the name of the program module
being compiled, the type of the module (that is, whether the module is a function or a

procedure), and the range of the program module.

4.2. The Grammar

The parser has been built using YACC. The language that can be parsed using
YACC are of type LALR(1). The EPL language is more complex than LALR(1). For
this reason the EPL specification in EBNF form does not have any direct translation to
the LALR(1). Some changes are made in the grammar specification so that the syntax

analyzer can be written using YACC while at the same time it will be equivalent to




the EBNF specification for the grammar. Most of the changes made are in the gram-
mar rules. In a few cases more than one character lookahead was needed. Since YACC

does only one character lookahead, when more than one character lookahead is needed

for parsing it is done through the lexical analyzer. These situation arises when "," is
found. The lexical analyzer looks ahead to determine whether "sublinear” or integer
number follows "," or not. If "sublinear" follows "," then it returns the token
"_COM_SUBL" , if some integer number follows ",” then it returns the token
" COMMA_BEFORE_INUM" (of course, intervening spaces and comments are
ignored). If neither follow ",” then the lexical analyzer returns °’,” to the syntax

analyzer. In the following the integer values used for representing the tokens and the

LALR(1) grammar used for YACC are shown.

ek

;Y
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4.2.1. The integer values used for representing the tokens

YACC assigns the following integer values for the token used in the yacc

specification.
Token Integer Code
# define _PROCESS 257
# define  _FUNCTION 258
# define _SEQUENTIAL 259
# define _INPUT 260
# define _OUTPUT 261
# define _DIRECT 262
# define _PORT 263
# define _DISPLAY 264
# define _ADDRESS 265
# define _FILE 266
# define _WHEN 267
# define _GROUP 268
# define _RECORD 269
# define _DOUBLE 270
# define _INTEGER 27
# define _CHAR m
# define _SHORT 273
# define _LOGICAL 274
# define _SUBLINEAR 275
# define _REAL 276
# define _SUBSCRIPT 277
# define _CASE 278
# define _OTHERS 279
# define  _RANGE 280
# define _THEN 281
# define _ELSE 282
# define _ENDIF 283
# define _ELSEIF 284
Table 6 : Table showing the integer values assigned to the tokens returned by the

lexical analyzer (continued ..).
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Token Integer Code
# define _TRUE 285
# define _FALSE 286
# define _PROCID 287
# define _LAST 288
# define _PRESENT 289
# define _OF 290
# define _[F 291
# define _SUB 292
# define _NAME 293
# define _INUM 294
# define _RELOP 295
# define  _RNUM 296
# define _STRING 297
# define _IMPLY 298
# define _REV_IMPLY 299
# define _IN 300
# define _OUT 301
# define _LONG 302
# define _QUAD 303
# define  _DIGIT 304
# define _COMMA_BEFORE_INUM 305
# define _COM_SUBL 306
# define _CONCAT 307
# define _POWER 308
Table 6 (continued) : Table showing the integer values assigned to the tokens

returned by the lexical analyzer.
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4.2.2. The LALR(1) grammar used by the YACC for parsing

%
#include <stdio.h>
#include "symbol_table.h"
#include "defn.h"
#include "defnl.h"
#include "eqtrees.h”
#include "arry_grph.h"
#include "rangetab.h”
#include "st_manipulator.h"
#include "file_lst.h"
#include "subl_Ist.h"
#include "routines.h”
#include "itoa.h"
#include "copy_name.h"
#include "file_dump.h”
#include "pars_rout.h"
extern int debug;
extern int b_debug;
struct Sym_tab_entry *temporary,
struct Case *whn_ptr;
%)

%token <inum> PROCESS _FUNCTION _SEQUENTIAL _INPUT
%token <inum> DIRECT PORT _CASE DOUBLE _INTEGER
%token <inum> DISPLAY _ADDRESS FILE WHEN GROUP
%token <inum> CHAR _SHORT _LOGICAL SUBLINEAR _REAL
%token <inum> OTHERS RANGE THEN _ELSE ENDIF
%token <inum> OUTPUT _SUBSCRIPT _TRUE _FALSE RELOP
%token <inum> PROCID _LAST _PRESENT _OF _IF _SUB
%token <inum> RNUM _STRING _IMPLY _REV_IMPLY _IN
%token <inum> NAME _INUM _ELSEIF RECORD _OUT
%token <inum> LONG QUAD _DIGIT

%token <inum> COMMA _ BEFORE_INUM

%token <inum> COM_SUBL




%nonassoc <inum> ’'=’

%left <inum> '+’ '-* T

P%left <inum> ’*’ '/’ &’ CONCAT

%right <inum> POWER

%type <inum> func_proc opt_fattr fattr porttype type rec

%type <name> format fflag opt_minus opt_E

%type <st> nlist substructure simpstructure

%type <eqt>

%type <rd> opt_range range
%type <cs> opt_others when_exp
Y%type <sp> nlist2 namel opt_nlist

%union

{

short sh;

int inum;

char *name;

struct Sym_tab_entry *st;
struct Range_def_blk *rd;
struct Eq_tree_node *eqt;
struct Rec_case *rc;
struct Case *cs;

struct St_ptr_list *sp;
struct Parm_list *pl;

}

% %o
specification  : func_proc ’:° _NAME opt_range sem_col statement
func_proc : PROCESS

| _FUNCTION
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statement : statement header sem_col
. | statement declaration sem_col
' | statement equation sem_col
+ | header sem_col

| declaration sem_col
| equation sem_col

.
b4

header : _INPUT "’ nlist
|_OUTPUT 2" nlist
nlist : nlist *,” _NAME
|_NAME
declaration : _FILE '’ _NAME opt_fattr substructure_list
| _GROUP ":’ _NAME opt_range simpstructure_list
| type *:* ndxlist
| subscript
ndxlist : _NAME opt_range

I ndxlist *," _NAME opt_range

’

opt_fartr : '( fatr par
I

.
14

simpstructure_list: simpstructure_list COMMA_BEFORE_INUM simpstructure
| _COMMA_BEFORE_INUM simpstructure

" :
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substructure_list : substructure_list _COMMA_BEFORE_INUM substructure
| COMMA_BEFORE_INUM substructure

fattr : _SEQUENTIAL

| _DIRECT
|_DISPLAY
| _PORT
! PORT

{BEGIN imply; }

porttype
(
BEGIN ordinary;

)

porttype : INPUT _IMPLY OUTPUT
|_OUTPUT _IMPLY INPUT

b

type : _CHAR
| _CHAR ' _INUM par
| _SHORT
| _INTEGER
|_LONG
|_REAL
| _DOUBLE
| QUAD
| _LOGICAL

’

rec : _RECORD ’~’
| _RECORD _INPUT ">’
|_RECORD _OUTPUT '’

opt_range M

{
BEGIN imply;
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}
range
{
BEGIN ordinary;

}
bracket
|

.
b

opt_others : opt. WHEN_OTHERS '’ simps _COM_SUBL _NAME
I

.
»

opt WHEN OTHERS : WHEN _OTHERS
| OTHERS

»

when_exp : when_exp _WHEN binexp ’:’ simps _COM_SUBL _NAME
[ _WHEN binexp *:* simps _COM_SUBL _NAME

»

simps : simps _COMMA_BEFORE_INUM simpstructure
| simpstructure
substructure : keep_ num rec _NAME opt_range

Icase_proc '(’ keep_name par when_exp opt_others
Icase_proc *(* keep_name par opt_others
| simpstructure

.
’

simpstructure  : _INUM type ":’ substr_rest_rep
Ikeep_num GROUP ’:’ keep_name opt_range
| keep_num keep_name opt_range

.
’




substr_rest

range

format

opt_minus

fflag

substr_rest_rep : substr_rest_rep ’,
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substr_rest part : _NAME opt_range

: substr_rest_part

| substr_rest_part format

{
BEGIN ordinary;

)

*

substr_rest
| substr_rest

.
14

:range ’,” INUM
lrange COMMA BEFORE_INUM _INUM
Irange °, "*’
Irange _COMMA_BEFORE_INUM ’*’
Irange ’,;” INUM IMPLY '*
lrange COMMA _BEFORE_INUM _INUM _IMPLY ’'*’
Irange ’,” '** REV_IMPLY _INUM
| _INUM
| *»
| INUM IMPLY '*'
{*** REV_IMPLY _INUM

: paren opt_minus _INUM fflag par
| paren opt_minus '*’ fflag par

: ' _INUM '+ opt E
I.” INUM opt_E
1"+’ opt_E

I

e
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opt_E

subs_part

subs_part2

subscript

opt_nlist

prefnlist

nlist2

namel
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lopt_E

E
: _SUBSCRIPT ’:’ keep_name _OF ’(’ prefnlist par
: _SUBSCRIPT '’ NAME

: subs_part subs_rest
| subs_part
| subs_part2 subs_rest
| subs_part2
I'subs_part2 SUBLINEAR '(’ nlist2 par binexp

’

: _OF °( prefnlist par
l

.
A ]

: prefnlist ’,” prefname
| prefname

.
,

: nlist2 ’,” namel
| namel

_NAME '’ NAME
I_NAME

*




subs_rest

equation

variable

range_rep

range_repl

opt_inum

varbase

prefname
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: subs_rest °,"” NAME opt_nlist
|’ NAME ($<name>$ = strsave(private_copy); } opt_nlist

,

: variable '=’ expression

: range_rep varbase
| varbase

,

: range_repl _ADDRESS .’
| _ADDRESS *’
| range repl

.
’

: range_repl LAST opt_inum °.’
Irange _repl _RANGE opt_inum ’.’
| _RANGE opt_inum .’
| _LAST opt_inum ".’

:*( _INUM par

: prefname index
| prefname

’

: NAME '’ NAME
| IN’’ NAME ' NAME
| _OUT’. NAME '’ NAME
| NAME

| IN".’ NAME

| OUT '’ NAME
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index

aexp_list

expression

elseif_rep

when_rep

binexp

bterm

bfactor
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: ’[* aexp_list bracket

: aexp_list ’," aexp
laexp_list COMMA_BEFORE_INUM aexp
laexp

.
*

: _IF binexp _THEN expression elseif_rep endif
| _IF binexp _THEN expression endif
| _IF binexp THEN expression elseif_rep

_ELSE expression endif

| _IF binexp THEN expression _ELSE expression endif
| _CASE ’(’ variable par when_rep
| _CASE ’(’ variable par when_rep opt WHEN_OTHERS ’:’ binexp
| _CASE ’(’ variable par opt WHEN_OTHERS ’:’ binexp
| binexp

r

: elseif_rep ELSEIF binexp "THEN expression
| ELSEIF binexp _THEN expression

: when_rep _WHEN binexp ’:’ binexp
| _WHEN binexp ':* binexp

: binexp P bterm
| bterm

*

: bterm &’ bfactor
| bfactor

’

: strexp _RELOP ({relop_val = yylval.inum; } strexp
| strexp

b




strexp

sterm

aexp

sign

term

factor

prim
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: strexp _CONCAT sterm
I sterm

.
’

: aexp
| _STRING

b4

: aexp sign term

I'sign term %prec POWER

| term

: term ’*’ factor
| term °/* factor
| factor

b4

: factor _POWER prim
1"~ prim
| prim

’

. RNUM

| _INUM

|’(’ binexp par

[ fcall

|_PROCID

| _PRESENT °.’ varbase
| variable

| TRUE

|_FALSE

| SUB

v
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fcall : keep_name ’(’ opt_binexp_list par
| keep_name ’(’ par
opt_binexp_list : binexp opt_binexp_rest

’

opt_binexp rest :’,’ binexp opt_binexp_rest
| _COMMA_BEFORE_INUM binexp opt_binexp_rest

_ |
endif : _ENDIF

bracket 2T

par 2

sem_col AN

keep_num : _INUM

case_proc : _INUM CASE

paren °C

s
-
-
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4.2.3. The action routines used in the YACC specification.

The action routines used are in most cases quite complex. Here a simplified very
high level description of the action routines is given. For more details please see the
appendix. The action routines are placed in the proper places within the YACC
specification. The description given here is not complete and somewhat ambiguous. It
is written that way to keep the description short and simple. The basic approach
towards solving different situations is focused upon. Following is the description of the

action routines used in the YACC specification.

%

#include <stdio.h>
#include "symbol_table.h"
#include "defn.h"”

#include "defnl.h”
#include "eqtrees.h”
#include "arry_grph.h"
#include "rangetab.h"
#include "st_manipulator.h"
#include "file_lst.h"
#include "subl_Ist.h"
#include "routines.h”
#include "itoa.h"

#include "copy_name.h"
#include "file_dump.h”
#include "pars_rout.h"
extern int debug;

extern int b_debug;

struct Sym_tab_entry *temporary;
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struct Case *whn_ptr;
%)

%token <inum> PROCESS _FUNCTION _SEQUENTIAL _INPUT
%token <inum> DIRECT _PORT _CASE _DOUBLE _INTEGER
%token <inum> DISPLAY _ADDRESS _FILE _"WHEN _GROUP
%token <inum> CHAR _SHORT _LOGICAL SUBLINEAR _REAL
%token <inum> OTHERS _RANGE _THEN _ELSE _ENDIF
%token <inum> QUTPUT _SUBSCRIPT _TRUE _FALSE RELOP
%token <inum> PROCID _LAST PRESENT _OF _IF SUB
%token <inum> RNUM _STRING _IMPLY REV_IMPLY _IN
%token <inum> NAME _INUM _ELSEIF _RECORD _OUT
%token <inum> LONG _QUAD _DIGIT

%token <inum> COMMA_BEFORE_INUM

%token <inum> COM_SUBL

%nonassoc <inum> ’=’

Z%left <inum> '+’ ' T

%left <inum> "*’ °/’ ’&’ CONCAT

Pright <inum> POWER

%type <inum> func_proc opt_fattr fattr porttype type rec
%type <name> format fflag opt_minus opt_E
Zotype <st> nlist substructure simpstructure
%type <eqt>

%type <rd> opt_range range

%type <cs> opt_others when_exp

%type <sp> nlist2 namel opt_nlist

Jounion

{

short sh;
int inum;




B e
.

- 104 -

i char *name;

struct Sym_tab_entry *st;
struct Range_def_blk *rd;
struct Eq_tree_node *eqt;
struct Rec_case *rc;
_ struct Case *cs;
struct St_ptr_list *sp;
struct Parm_list *pl;

}

! %%

specification  : func_proc ’:> _NAME opt_range sem_col
{
Create the module structure for the program module.
create a new entry for the symbol PROCESS (PROCESS
is the name of the interim file).
Set the global variables as
under_file = 0;
porttype = 2;

}

statement
{
If debug flag is set then call the following routines:

print_files();

print_subl();

print_def();

print_iol();

print_st();

print_all_eq_trees();

func_proc : _PROCESS
| _FUNCTION
statement : statement header sem_col

| statement declaration sem_col
| statement equation sem_col




| header sem_col
| declaration sem_col
| equation sem_col

f

.
»

h header : _INPUT ’:’ nlist
|_OUTPUT .’ nlist

*

nlist : nlist’,” _NAME

{
Create the file list (if it is not yert created) and
install the symbol (the file names) in the file list
if it is not yet installed. Check for possible
redefinition. Also create the symbol table entries
for these symbols and fill the type_of_use ,
io_flags.input and io_flags.output fields of the
symbol table entry.

)

| _NAME

{

Do the same thing as done for the previous grammer rule.

}

declaration : _FILE’ _NAME
{
Create a symbol table entry for the file name if it
is not already created. Check for redeclaration. Set
under_file = 1;
to indicate that all the substructures now belongs to
a file structures and not to the interim file PROCESS.

Insert the symbol table entry of the file in the
Relation_q table.
}
opt_fatr substructure_list

{

-~ Naaatenustastaashiie
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i Fill up different fields of the symbol table entry
for the file. By now the table relation_q are filled
so call
insert_relations();
to insert the relationship of all the data items that
belongs to the file among each other.

= If it is a DIRECT or a simple PORT file (i.e., without

IN => OUT or OUT => IN) then make two identical copy
of the same file. One of these is of type output.

The name of all the data items (including the file name)
of the output file are prefixed with "OUT_".

If it is 2 PORT file with IN => OUT or OUT => IN then

there are always exactly two record structures defined

under the file structure definition. One is for the

input "RECORD INPUT" and the other is for "/RECORD OUTPUT"
In this case create two file structures, one for the

input and the other for the output. The input file has

only one record , the input record, with its record

structure.

The output file has also one record , the output record,
with its record structure. Moreover, prefix the name of
all entries that belongs to this output file with "OUT_".

While doing all these check for possible semantic errors.

}

|_GROUP ' _NAME opt_range
{

Create a symbol table entry for the group name and fill
in as many fields of that entry as possible. Insert a
pointer to the symbol table entry in the beginning
of the relation_q array. The group entry along
with all the data items that belongs to this group are
made part of the interim file.

}

simpstructure_list




ndxlist

opt_fattr
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Call the routine

insert_relations();
to insert the sibling, child , parent relationship for
all the data items that belongs to the group. Call the
routine

actual_insert(pointer to the

symbol table of the group);

to insert the I/O information and file_type information
of all the entries under the group.

)

| type *:* ndxlist

{

Have the inherited attribute pass down the parse tree
of the non-terminal "ndxlist".

}

| subscript

: _NAME
{
create symbol table entry for the name and make it a
childs of the interim file. Fill some of the fields
of this entry as per information available.
}
opt_range
{
Set the range and dimensionality field of the symbol
table entry.

}

Indxlist °,” _NAME opt_range

{

Do similar thing as done for the previous grammer rule.

J

: ’C fatr par
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~ {
_ ' pass the synthesized attribute (the file type
: information) up the parse tree.

: }
E ' { { same as for the previous rule}

.
?

simpstructure_list: simpstructure_list _COMMA_BEFORE INUM simpstructure
| _COMMA_BEFORE_INUM simpstructure

.
’

substructure_list : substructure_list COMMA_BEFORE_INUM substructure
| _COMMA_BEFORE_INUM substructure

’

fattr : _SEQUENTIAL
{ Pass the file type information up the parse tree }
| DIRECT { same }
| _DISPLAY { same }
|_PORT  { same )
|_PORT  { same }
{BEGIN imply; }
porttype
(
BEGIN ordinary;
Pass the file type information up the parse tree.

}

porttype : _INPUT _IMPLY OUTPUT
{ Pass the file type information up the parse tree }
|_OUTPUT _IMPLY _INPUT
{ Pass the file type information up the parse tree }

type : _CHAR
? { Pass the file type information up the parse tree }
| _CHAR ’(" _INUM par { Same }
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| _SHORT { Same }

| INTEGER { Same }

| LONG { Same }
_REAL { Same }

| DOUBLE { Same }

|_QUAD { Same }

LOGICAL { Same }

: _RECORD '’

{ Pass the file type information up the parse tree )

| RECORD INPUT '  { same )
| RECORD OUTPUT '  { same )

’

: ,[!
{
BEGIN imply;
dimensionality = 0;
)
range
{
BEGIN ordinary;

}

bracket

: opt WHEN _OTHERS '’ simps _COM_SUBL NAME
{

Create the Case structure and fill in all the fields of
that structure with appropriate values.

Adjust the top_subl_list.
)

{

Return NULL to indicate that no case structure has been
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3
h created.
, )
2 opt WHEN OTHERS : WHEN _OTHERS

| _OTHERS

when_exp : when_exp _WHEN binexp ’:’ simps _COM_SUBL NAME
{

Create the Case structure and fill in all the fields of
that structure with appropriate values.

Adjust the top_subl_list.
}
| _WHEN binexp "’ simps _COM_SUBL NAME
{

Same as for the previous grammer rule.

}

simps : simps _COMMA_BEFORE_INUM simpstructure
| simpstructure
substructure : keep_num rec _NAME opt_range

(

Create a symbol table entry for the record entry and
insert inthe relation_q. Fill in the fields of the entry.

Set range and dimensionality field and set the dim_proc
flag to 1.

}

|case_proc ’(* keep_name par when_exp opt_others

{
Install a new symbol table entry for the CASE. Fill

its fields and adjust the relation_q table for correct
insertion of the relations.

)
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| case_proc *(’ keep_name par opt_others

{

Similar as done for the previous grammer rule.

}

| simpstructure

E simpstructure  : _INUM type ’:’ substr_rest_rep
| keep_num _GROUP ’:’ keep_name opt_range
{
Insert the name in the symbol table and fill its
different fields. Adjust the relation_q table.
}

| keep_num keep_name opt_range

{

Same as for the previous rule.

)

substr_rest part : _NAME opt_range
{

similar as the previous grammer rule.

}

substr_rest : substr_rest_part
| substr_rest_part format

{
BEGIN ordinary;

}

substr_rest_rep : substr_rest rep ’," substr_rest
| substr_rest

.
’

range :range ’,) _INUM

l
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{

Create range_def_blk and fill in the is_static, ceiling
and next fields of it. Count the dimensionality.

)
Irange _COMMA_BEFORE_INUM _INUM

{

Similar as the previous grammer rule.

}

|range °," '*’ { same )}
range _COMMA_BEFORE_INUM ’'*’ { same )}
|range ’,’ INUM _IMPLY '*’ { same }

|Irange _COMMA_BEFORE_INUM _INUM _IMPLY '*’ { same }
lrange ’,” *** REV_IMPLY _INUM { same }

|_INUM { same }

| *% { same }

|_INUM _IMPLY "+ { same }
|’* REV_IMPLY _INUM ( same )

.
*

: paren opt_minus _INUM fflag par
{

Retrieve the format string and store in a safe place.

}

| paren opt_minus '*’ fflag par

{

Retrieve the format string and store in a safe place.

:’ _INUM '+’ opt E
I".” _INUM opt_E

I"+* opt_E

lopt_E 4

b4
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VE
:

: _SUBSCRIPT '’ keep_name _OF ’(’ prefnlist par
{

Install the subscript entry in the symbol table.

}

: _SUBSCRIPT "’ _NAME
{
Install the subscript entry in the symbol table.

}

: subs_part subs_rest
| subs_part
| subs_part2 subs_rest
| subs_part2
| subs_part2 SUBLINEAR °(’ nlist2 par binexp
{
Install the sublinear subscript in the symbol table
and add it in the sublinear list.

}

: _OF ’(’ prefnlist par
l

: prefnlist ’," prefname

{

Make a list of all the names that can be referred to by
the subscript (it may include two copy for a single

name if the name has two entries in the symbol table for
input and output).
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| prefname

{

Similar as before,

}

nlist2 : nlist2 ’,” namel

{

Make a list of the symbol table entries referred and
pass a pointer to the head of the list up the parse tree.

}

| namel

(

Do similar thing.

}

namel _NAME '’ NAME
{
Return a pointer to the appropriate entry of the symbol
table. Install a new entry if the entry is not already
there.
}
| NAME
{
Do similar thing.
}
subs_rest : subs_rest °,” NAME opt_nlist

{
}

Create a symbol table entry for the subscript.

1", _NAME ($<name>$ = strsave(private_copy); } opt_nlist

{
}

Create a symbol table entry for the subscript.
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equation : variable ’=’ expression
{
Change the type_of_use field of the appropriate symbol
table entry.
Create an equation tree node with label ASSERTION and
fill in its other fields appropriately.
Check for multiple definition of the variable. If there
is a multiple definition then adjust the pointers of the
P involved equations as required.

b variable : range_rep varbase

{
Maintain a stack for keeping the range, last, address
and present information. Report stack error if found.
Create appropriate RANGE, LAST, PRESENT or ADDRESS
entry if needed and if they are not already found
in the symbol table. Have the other_pointer fields
of all these symbol table entries appropriately
linked.
Return a pointer to the appropriate symbol table entry
for use in the equation tree.

}

| varbase

{
Pop the stack.

}

range_rep : range_repl _ADDRESS '’
{
Indicate that the ADDRESS is found.

)
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| _ADDRESS .’
{ Same as before. }
| range_repl

: range_repl _LAST opt_inum *.’
{
Increment range_counter or last_counter as appropriate
by the value returned by the opt_inum.
}
Irange repl RANGE opt_inum °.’
{
Increment the range_counter by the value returned by
opt_inum.
}
| _RANGE opt_inum ’.’
{

Set range_counter to the value returned by opt_inum.
}
! _LAST opt_inum *.’
{

Set last_counter to the value returned by opt_inum.

}

:’C _INUM  par
{
Return the value of the INUM.

}
| { Return 1.}

’

: prefname

{
push(range counter,last_counter,is_address);
range_counter = last_counter = is_address = 0;

}

index
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{

Adjust the pointers of the equation tree nodes as
required.
}
| prefname
{

Similar action as for the previous rule.

}

: _NAME '’ NAME
{
IN_OUT = 0;
Set st_ptr to the symbol table entry for the variable.
Call the routine prefl () .
}
| _IN’’ _NAME '’ NAME
(
IN_ OUT = [;
Rest same as before.
}
I _OUT .’ _NAME '’ NAME
{
IN_OUT = 2;
Rest same as before.
}
I_NAME
{
IN_OUT = 0;
Rest same as before.
)
I_IN .’ _NAME
{
IN OUT = 1;
Rest same as before.
}
I_OUT .’ _NAME

{
IN OUT = 2;
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Rest same as before.

)

it

: ’[" aexp_list bracket

.
14

: aexp_list ’,” aexp
{
Create appropriate equation tree nodes (as described in
the Global data structure section) and link them.

}
laexp lis COMMA_BEFORE_INUM aexp

{

Similar as before.
)
{aexp
{
Similar as before.

}

: _IF binexp _THEN expression elseif_rep endif
| IF binexp "THEN expression endif
| IF binexp _THEN expression elseif_rep _ELSE expression endif
| _IF binexp “THEN expression _ELSE expression endif
{
For each of the above rule create a equation tree node
and fill its different fields appropriately.
}
| CASE ’(’ variable par when_rep
{ i
Create an appropriate CASE_EXP equation tree node. n
}
| CASE ’(’ variable par when_rep opt_ WHEN_OTHERS .’ binexp
{
Create appropriatz OTHER_ACTION and CASE_EXP 4
equation tree node and link them.
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}
| _CASE ’(’ variable par opt WHEN_OTHERS '’ binexp
{
Create an appropriate CASE_EXP and OTHER_ACTION
equation tree node and link them.

}

| binexp

: elseif_rep _ELSEIF binexp THEN expression
| ELSEIF binexp _THEN expression
{

For each of the above rule, create appropriate
IF_ACTION and IF_EXP nodes and link them properly.
}

: when_rep _WHEN binexp ’:” binexp
| 'WHEN binexp " binexp
{

For each of the above rule, create appropriate
WHEN_ACTION and WHEN_TEST nodes and link them properly.

}

: binexp T bterm

{
Create an appropriate BINARY_OR equation tree node.

}

| bterm

.
R4

: bterm &’ bfactor

{
Create an appropriate BINARY_AND equation tree node.

}

| bfactor

’
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bfactor : strexp _RELOP {relop_val = yylval.inum; } strexp
{

Create an appropriate equation tree node with label
BINARY_EQ, BINARY_GE, BINARY_LE, BINARY_NE, BINARY_GT,
or BINARY_LT depending on the value of the relop_val.
}
| strexp

’

strexp : strexp _CONCAT sterm

{
Create an appropriate BINARY_CONCAT equation tree node.

}

| sterm

k4

sterm : aexp
| _STRING

{
Create an appropriate LITERAL equation tree node.

}

aexp : aexp sign term

{
Create an appropriate BINARY_PLUS or BINARY_ MINUS

equation tree node depending on the "sign".

}
I'sign term %prec POWER

{
Create an appropriate UNARY_PLUS or UNARY_MINUS

equation tree node depending on the "sign".

)

| term

sign

e,
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: term '*’ factor

{
Create an appropriate BINARY_TIMES equation tree node.

}

| term °/* factor

{
Create an appropriate BINARY_DIVIDE equation tree node.

}

| factor

.
*

: factor _POWER prim
{
Create an appropriate BINARY_POWER equation tree node.
)

l!~a

{
Create an appropriate UNARY_NOT equation tree node.

}

| prim

prim

14

RNUM

{
Create an appropriate LITERAL equation tree node.

Set the type of the symbol table entry for the real
number to REAL.
}
| _INUM
{
Create an appropriate LITERAL equation tree node.
Set the type of the symbol table entry for the integer
number to INTEGER.
}
[*(’ binexp par
 feall
| _PROCID
{

Create an appropriate LITERAL equation tree node.
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)
| _PRESENT .’ varbase

{
Create an appropriate symbol table entry if required
for the symbol PRESENT whose other_pointers field
points to the symbol table entry for "varbase".
| variable
[ _TRUE
{
Create a symbol table entry for the symbol TRUE if it
is not already present in the symbol table.
Create an appropriate LITERAL equation tree node.
}
| _FALSE
{
Create a symbol table entry for the symbol FALSE if it
is not already present in the symbol table.
Create an appropriate LITERAL equation tree node.

}
| SUB

{
Create a symbol table entry for the unique symbol
created by the lexical analyzer using the itoa routine
for this purpose. The symbol is for a subscript.
Create an appropriate LITERAL equation tree node.

}

’

: keep_name ’(’ opt_binexp list par
| keep_name ’(’ par
(
For both of the above rules :
create an appropriate FCALL equation tree node.

}

.
’

opt_binexp_list : binexp opt_binexp_rest

{

Create an appropriate PARMS equation tree node.
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: ', binexp opt_binexp_rest

|_COMMA_BEFORE _INUM binexp opt_binexp rest

endif

bracket

par

sem_col

keep_num

case_proc

paren

{
For bothe of the above rules :

create an appropriate PARMS equation tree node.

}

_INUM

: _INUM _CASE
{
Create a new symbol table entry for the symbol CASE.
Add this entry to the case record list. The head of
this list is pointed to by case_rec_list_head.
Add this entry appropriately to the relation_q.
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% %

4.2.4, The routines used in the Syntax Analyzer

The syntax analyzer uses several routines. In this section the purpose and the cal-
ling format of these routines are described. The algorithms are not given, but the actual

source codes can be found in the appendix.

4.24.1. hash

Routine name: hash
File name : source/st_manipulator.h
Routine type: integer function.
Author: Balaram Sinharoy
Calling Format: hash (s)

Arguments:

char *s -- The Symbol name.

Calling routines: yyparse,lookup

o

Global variable/structures used:
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HASHSIZE
Sym_tab_entry

Purpose:

P This routine returns the bucket (out of 101 buckets) in which the symbol "s" will
be placed.

Example:

The call hash ("our") will return 39 indicating that the entry for the symbol "our"
is to made in the bucket 39.

Algorithm:
Input: A pointer to a character string for denoting the name of a symbol.

Output: An integer in between 0 and 100 which denoted the bucket in which
symbol belongs.

Add all the characters (the integer values of their representation) in the string.
Divide the sum by the constant HASHSIZE (which in our case is 100) and return
the remainder.
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4.2.4.2. strsave

Routine name: strsave
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File name : source/st_manipulator.h
Routine type: char function.
Author: Balaram Sinharoy
Calling Format: strsave (s)
Arguments:

char *s -- The Symbol name.
Calling routines: yyparse,do_install,install
Global variable/structures used:

None.

Purpose:

This routine will allocate a new location for the symbol name pointed to by s and
return a pointer to this location to the calling routine.
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4.2.4.3. lookup

Routine name: lookup

File name : source/st_manipulator.h

Routine type: struct Sym_tab_entry

[l SUSHINNENPINIOR. | N .
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I Author: Balaram Sinharoy
Calling Format: lookup (s)
%: Arguments:

char *s -- The Symbol name.
Calling routines: yyparse, install
“ Global variable/structures used:

Prl_struct
Sym_tab_entry

Purpose:

The purpose of this routine is to lookup for the entry of the symbol "s" in the
symbol table. It first calls the routine hash to find out in which bucket the symbol
belongs to. Then it searches along the bucket to find out the first entry of that symbol

in that bucket.

Example:

lookup ("our”) will return a pointer to a symbol table entry in the bucket 39.

. 2

Algorithm:

Input : A pointer to a character string "s" which denotes a symbol. 'ﬂ

Output: A pointer to a symbol table entry if the entry is already there
in the symbol table else it returns NULL.
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I = hash(s)

Search through the link list of the symbols in the I-th bucket of the symbol table to
find out the first entry in the bucket that has the same symbol name.

If such an entry is found in the symbol table then return a pointer to that entry of the
symbol table else return NULL
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4.2.4.4. do_conditional_install

Routine name: do_conditional _install
File name : source/st_manipulator.h
Routine type: struct Sym_tab_entry
Author: Balaram Sinharoy
Calling Format: do_conditional_install (st_ptr,symbol,np,nd,type)

Arguments:

char *symbol -- The Symbol name.
st_ptr,np -- Sym_tab_entry o]
int type

nd -- Prl_struct

Calling routines: install -~
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_ Global variable/structures used:

Prl_struct
Sym_tab_entry

Purpose:

This routine goes through the appropriate bucket and tries to find an entry in the
symbol table that has the same name (a character string) and whose other_pointers
points to the entry pointed to by the argument st_ptr. This routine is called from the

routine install. When the I flag in install is set to 4,5,6 or 7, entry for RANGE,
ADDRESS,PRESENT or LAST is searched accordingly.
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4.24.5. do_install

Routine name: do_install
File name : source/st_manipulator.h
Routine type: struct Sym_tab_entry
Author: Balaram Sinharoy
Calling Format: do_install(symbol _name)
Arguments:
char *symbol_name -- The Symbol name.

Calling routines: yyparse,install
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Global variable/structures used:
brn_ptr
Prl_struct
Sym_tab_entry
Purpose:
The purpose of this routine is to actually install the symbol name symbol_name.

When called it creates a new entry in the symbol table allocating space for it, for the
symbol name pointed to by the pointer symbol _name.
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4.2.4.6. install

Routine name: install
File name : source/st_manipulator.h
Routine type: struct Sym_tab_entry
Author: Balaram Sinharoy
Calling Format: install (symbol_name , I)
Arguments:
char *symbol_name -- The Symbol name.

int [ -- A switch to determine which type of entry we are
looking for.

- -

R

e
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Calling routines: yyparse
Global variable/structures used:

Prl_struct

Sym_tab_entry

already_installed, install_always.
last_st_ptr,address_st_ptr,present_st_ptr,range_st_ptr

.' Purpose:

The primary purpose of this routine is to lookup for the entry of the symbol
"symbol_name" in the symbol table. If the entry is not found then a new symbol table
entry in the appropriate bucket will be made. The searching for the symbol name is
directed by the flag L.

Depending on the value of I the search is done:
I =0: The first entry in the bucket that has the same name is
returned, if there is no entry found hen it creates another
entry and returns a pointer tio that entry.
I =1: An entry which belongs to the file that has a name same as
the name pointed to by filename is found out, if such an
entry is not found then another entry is created .
I =2: Find an entry with the name symbol_name and which is a FILE.
[ =3: Find an entry symbol_name which is a SUBSCRIPT .
I = 4: Find out the entry in the symbol table which is a RANGE and
whose other_pointers pointer points to the appropriate
symbol table entry.
I =5: Find out the entry in the symbol table entry which is a ADDRESS
and whose other_pointers pointer points to the apprpriate

symbol table entry.

I = 6: Find out the entry in the symbol table entry which is a PRESENT
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and whose other_pointers pointer points to the apprpriate
symbol table entry.

I =7: Find out the entry in the symbol table entry which is a LAST
and whose other_pointers pointer points to the apprpriate
symbol table entry.

I =8: Find the symbol table entry which is a function name.

I =9: If the use of a variable occurs before its declaration then
that variable is already in the symbol table and so we have
to refer to that place. Looking through the bucket find out
the entry that has the same name and which does not have any
parent, which means that it is not attached to any
structure

Example:

lookup ("our" ,0) will return a pointer to the first symbol table entry in the bucket
39. If it is found that there is no entry in that bucket then it will make a new entry for
“our” in the symbol table.

Algorithm:

Input: A pointer "symbol_name" to a character string denoting a symbol name
and an integer "I" which dictates how the search and installation of
the symbol name will be done. A global variable "install_always” is used
which is "1" to indicate that the symbol name is to be installed no
matter what is the value of "I".

Output: A pointer to the symbol table entry , which may be created by this i
algorithm or which may have been already present in the symbol table.
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A global variable "already_installed” is set to "1" if the particular
variable which is represented by the symbol (it is to be noted here that
many variable may be represented by the same symbol) is alreacy found
in the symbol table.

np = lookup (symbol_name);
already_installed = 1;
if (install_always == 1)
install the symbol in the symbol table by calling the function "do_install"
else
do the following depending on the value of "I" :

I=0:

if ("np" points to an entry of a string)
search the rest of the current bucket for another entry
of the same symbol which is not a string.

if no such entry is found
call do_install(symbol_name);

I=1:
If (np == NULL)
call do_install(symbol_name);
else

while ("np" does not point to the symbol name "symbol_name" | "np"
does not belong to the file "filename");
/* filename is a global variable pointing to a character string
for a filename */

np = np->next;
if (np == NULL)
break;
).
if (np == NULL)
np = do_instali(symbol_name);

I=2:




- 134 -

while ("np" does not point to the symbol name “symbol_name" |
"np" is not an entry for a FILE)
{
np = np->next;
if (np == NULL)
break;
}
if (np == NULL)
np = do_install(symbol_name);

[=3:
while ("np" does not point to the symbol name "symbol_name" I
"np" is not an entry for a SUBSCRIPT)
{
np = np->next;
if (np == NULL)
break;
}
if (np == NULL)
np = do_install(symbol_name);

I1=4:
np = do_conditional_install(range_st_ptr,symbol_name,np,nd, RANGE);

I=5:
np=do_conditional_install(address_st_ptr,symbol_name,np,nd,ADDRESS);

I=6:
np=do_conditional_install(present_st_ptr,symbol_name,np,nd, PRESENT);

=7
np = do_conditional _install(last_st_ptr,symbol_name,np,nd,LAST);

I=8:
while ("np" does not point to the symbol name "symbol_name" |
"np" is not an entry for a FUNCTION)
{
np = np->next;
if (np == NULL)

|1®




)
if (np == NULL)
{
np = do_install(symbol_name);
. np->type_of_use = FUNCTION;
}

h break;

[=9:
. while("np" does not point to the symbol name "symbol_name" |
l "np" has a parent | "np" is an entry for a string)
{
np = np->next;
if (np == NULL) break;
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4.24.7. itoa

Routine name: itoa

File name : source/itoa.h

L |
Routine type: a pointer to a character string.
Author: Balaram Sinharoy
Calling Format: itoa(inum) q

Arguments:

inum -- integer




Calling routines: lex.yy.c

! Global variable/structures used:
None.
b Purpose:

This routine returns a pointer to a character string that contains the character string for
the integer inum. This is used for appending the integer (in character) with the SUB.

Example:

itoa(23) will return a pointer to the character string "23".

N oy A v > -y > o -y~ > A s Ay Ay ;- e~y e Ay A A -~ . " - -~ - " - v . -

4.2.4.8. insert_relations

Routine name: insert_relations
File name : source/routines.h !ﬂ
Routine type: void
Author: Balaram Sinharoy !A
Calling Format: insert_relations()

Arguments:

e
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None.
Calling routines: yyparse

Global variable/structures used:

filetype
relation_q(]

io_inf

io_inf2
Prl_struct
Sym_tab_entry

Purpose:

Before calling the routine insert_relations the table relation_q has been filled by
the yyparse. The first entry in the relation_q is the filename. Each entry in the
relation_q table has two parts. The first part contains a pointer to the symbol table
entry and the second part contains the integer that has been found in front of the sym-
bol name in the definition of the file in which the name has been found. To seperate
the WHENs in the CASES number 0 is used. To indicate the end of definition of case
the integer -2 has been used.

Given with this table this ro_utinc inserts all the relations (i.e. it fills the entries for
the parent sibling and old_child filds for all the variables that has been found in the
definition of that file).

Example:
For the file declaration :

file: commands,
10 rec: inrec[*],
20 char(2): code,
20 case(code)
when single: 30 int: argl, sublin jl
when "MV’ : 30 int: arg2l,
30 int: arg22, sublin j2;
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i The content of the relation_q is:

: commands 0
inrec 10

i code 20

CASE 20

argl 30

0

arg21 30

arg22 30

0

-2

The corresponding entries in the symbol table are:
This is an entry in the 42 bucket :

Entry is made for the symbol: commands
Parent: NULL

Oldest child : inrec

next sibling : NULL

type of use: File

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 010 00000

Dimensionality : 0

Other_pointers is NULL

Range : NULL

This is an entry in the 24 bucket :

Entry is made for the symbol: inrec
Parent : commands

Oldest child : code

next sibling : NULL

type of use: Record

file type : Sequential

!
i
4
_
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type : yet unknown or the entry is not for a field
I/O flags : 010 00010

Dimensionality : 1

Other pointers is NULL

Range : Following are the ranges defined --
is_static: 0, ceiling: 0, type

This is an entry in the 7 bucket :

Entry is made for the symbol: code
Parent : inrec

oldest child : NULL
Next sibling : CASE
type of use: Field

file type : Sequential
type : char(2)

I/O flags : 010 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

This is an entry in the 82 bucket :

Entry is made for the symbol: CASE

Parent: NULL

oldest child : NULL

next sibling : NULL

type of use: Undef 0

file type : Sequential

type : yet unknown or the entry is not for a field
I/O flags : 010 01000

Dimensionality : 0

Other_pointers points to the rec_case entry for code
Range : NULL




This is an entry in the 60 bucket :

Entry is made for the symbol:

Parent : CASE

oldest child : NULL
next sibling : NULL
type of use: Field

file type : Sequential
type : integer

I/O flags : 010 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

This is an entry in the 9 bucke: :

Entry is made for the symbol:

Parent: NULL

oldest child : NULL
Next sibling : arg22
type of use: Field

file type : Sequential
type : integer

I/O flags : 010 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL

This is an entry in the 10 bucket :

Entry is made for the symbol:

Parent: NULL

oldest child : NULL
next sibling : NULL
type of use: Field
file type : Sequential
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arg21

arg22
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N type : integer
* 1O flags : 010 00000
Dimensionality : 0
Other_pointers is NULL
Range : NULL
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4.2.4.9. insert_parent

Routine name: insert_parent
File name : source/copy_name.h
Routine type: void
Author: Balaram Sinharoy
Calling Format: insert_parent (oldest_child)
Arguments:
oldest_child -- pointer to symbol table entry.
Calling routines: copy_file

Global variable/structures used:

None.
Purpose:

This routine will insert the parent of all the entries which are sibling of other entries
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and the oldest of them have their parent defined. This also works recursively.
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4.2.4.10. insert_io

Routine name: insert_io
File name : source/routines.h
Routine type: void
Author: Balaram Sinharoy
Calling Format: insert_io()

Arguments:
None

Calling routines: yyparse
Global variable/structures used:

io_inf -- contains the information for io_flags.is_input
io_inf2 -- contains the inforrmation for io_flags.is_output

Purpose:

This routine inserts all the /O information for all the nodes in the symbol table. It
starts from the file list, and assuming that the file name has correct I/O information it
goes through all the entries that belongs to this tree and inserts the correct I/O infor- .ﬁ
mation. 7

e
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4.2.4.11. io_entry

Routine name: io_entry
File name : source/routines.h
Routine type: integer function.
Author: Balaram Sinharoy
Calling Format: io_entry (st_ptr)
Arguments:

st_ptr -- a pointer to the symbol table.
Calling routines: yyparse
Global variable/structures used:

None.
Purpose:

This routine is used to determine the 1/O information that the entry st_ptr is going
to get. The call to this routine is very rare. In those occassions when we need to know
the I/O information b:fore we have inserted it by calling io_insert explicitly we call

this routine. This routine finds out the I/O information by finding the file in which it
belongs, if the I/O information is not already found in the entry for that symbol.
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4.2.4.12. add_dimn

Routine name: add_dimn(st_ptr)
File name : source/routines.h
Routine type: void
Author: Balaram Sinharoy
Calling Format: add_dimn(st_ptr)
Arguments:

st_ptr -- pointer to symbol table entry.
Calling routines: correct_dimn
Global variable/structures used:

None
Purpose:

This routine does the actual addition. This routine also calls itself recursively to do the
addition successively for all the entries that belongs to the subtree rooted at :t_ptr.
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4.2.4.13. correct_dimn
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Routine name: correct_dimn
File name : source/routines.h
Routine type: integer function.
Author: Balaram Sinharoy
Calling Format: correct_dimn
Arguments:

None.
Calling routines: yyparse
Global variable/structures used:

files_ptr,top_ptr -- pointers to Files
Purpose:
The routine correct_dimn does the dimensionality correction at the end of parsing. The
dimensionality that has been inserted in the place of the corresponding field is what it
was defined in the specification of the program. The correct dimensionalty of a vari-
able is the sum of the dimensionality of its and all of its predecessor and this is true

for all the descendent of a file. In this routine starting from the first direct descendent
of file we add the dimensionality information of the parent to all of its children.

Example:
For the declaration:
file : a (direct),

10 rec : our [*],
20 int : ¢[*,7,%], d[8.9];
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the dimensionalities that will be found after the parsing are:

our -- 1;
c -4
d -3
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4.24.14. pop

Routine name: pop
File name : source/routines.h
Routine type: void function.
Author: Balaram Sinharoy

Calling Format: pop()

Arguments:

None. _1
Calling routines: yyparse
Global variable/structures used:

stack_counter, stack[]
range_counter,last_counter,is_address

Purpose:

@

le®
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This routine pops the value of the range counter ,is_address, last_counter from the
stack. This popped values are the current values for the variable that is being pro-
cessed currently and the corresponding range , address and last information are stored
in the symbol table by creating appropriate last, range and address entries in the sym-
bol table.
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4.2.4.15. push

Routine name: push
File name : source/routines.h
Routine type: void function.
Author: Balaram Sinharoy
Calling Format: push(range,last,addr)
Arguments:
range,last,addr -- integer
Calling routines: yyparse
Global variable/structures used:
stack_counter, stack(]
Purpose:

This routine pushes the range,addr and last infomation that associates with the
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"prefname" in the stack and adjusts the stack counter for later retrieval.
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4.2.4.16. get_node

Routine name: get_node
File name : source/routines.h
Routine type: void
Author: Balaram Sinharoy
Calling Format: get_node (label,left,right,parent,type,left_type)
Arguments:
label,type,left_type -- integer
left -- can be pointer to Sym_tab_entry or Eq_tab_entry
parent,right -- pointer to Eq_tab_entry
Calling routines: yyparse
Global variable/structures used:
None
Purpose:
This routine creates a new entry in the in the equation tree whose label is "label”

left child is "left", right child is "right", parent is “parent”,and which is of type "type".
left_type is used as a flag to indicate that the left child is a symbol table pointer (when

.-
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. left_type is 1) or a pointer to equation tree (when left_type is 0).

— o - - o - - - - 00 - NS O " - 0 Ay > a2 o 0 AP D Ay .t om A - - " "~ - - - - - - - -

4.24.17. copy_entry

Routine name: copy_entry
g ; File name : source/copy_name.h

Routine type: void

Author: Balaram Sinharoy
Calling Format: copy_entry (ptr)

Arguments:

ptr -- pointer to symbol table entry.
Calling routines: yyparse,copy_file
Global variable/structures used:

None.

Purpose:
This routine copies all the entries that belong to the subtree pointed to by ptr into a
seperate place. While copying it will find the appropriate loose variable (i.e., not
attached to any file structure) with compatible I/O information whenever possible.If ptr

is NULL then it does nothing. It also calls recursively to copy all the variables that is
descendent of ptr.




4.2.4.18. copy_file

Routine name: copy_file
File name : source/copy_name.h
Routine type: a pointer to a character string.
Author: Balaram Sinharoy
Calling Format: copy_file (parent)
Arguments:
parent -- pointer to Sym_tab_entry
Calling routines: yyparse,create_duplicate_file
Global variable/structures used:

None.

Purpose:

This routine will make a duplicate copy of the file pointed to by parent. While copying
it will make a scan through the symbol table to find whether any more of the loose
variables can also be attached to the same file. For that purpose it goes through the 1
bucket in which it is supposed to belong and tries to find the loose variable (that is, a
variable which is the same as the variable whose copy we are making , only that it has
different I/O information.

I\ A
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4.24.19. dump

Routine name: dump
File name : source/copy_name.h
Routine type: void
Author: Balaram Sinharoy
Calling Format: dump(ptrl,ptr2)
Arguments:

ptrl,ptr2 -- pointer to symbol

table entry.

Calling routines: yyparse,copy_file

Global variable/structures used:

None.

Purpose:

This routine dumps all the fields of the entry pointed to by ptrl into the fields of the
entry pointed to by the pointer ptr2.
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4.2.4.20. change_out_name

Routine name: change_out_name
File name : source/routines.h
Routine type: void
Author: Balaram Sinharoy
Calling Format: change_out_name ()
Arguments:

None.

Calling routines: yyparse
Global variable/structures used:
top_files is referenced to know the list of files.

Purpose:

This function will change the name of all those PORT files
which are output (in this case there are two copies of the same
file in the symbol_table. One copy is for the input and the other ¢
copy is for the output. Before this routine is called (this

routine is called only when the parser has completed its task)

the name of this input and the output file is the same, after

this routine is called the name of all the entries in the

output file (only for the above kind of otuput files are

treated here) will be prefixed by OUT _.

\.J




4.2.4.21. rec_change_name

L Routine name: rec_change name

File name : source/routines.h

Routine type: void function.

Author: Balaram Sinharoy

Calling Format: rec_change_name (symbol)
Arguments:

symbol -- a pointer to the symbol table.

Calling routines: change out_name
Gilobal variable/structures used:
None.
Purpose:
This routine recursively goes through all the symbol table entries that belongs to the

subtree rooted at "symbol” and changes their symbol name by prefixing the existing
name with "OUT_". This routine calls itself recursively.
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4.2.4.22. print_files

Routine name: print_files

File name : source/file_dump.h

Routine type: void
Author: Balaram Sinharoy
* Calling Format: print_files ()

Arguments:

None.
Calling routines: yyparse
Global variable/structures used:
None.
Purpose:
This routine will dump the files that has been declared in the program. Since at the
time of insertion a new file name was inserted on top of another old name that are

there already in the list (and so it is a stack) so the print out will be in the reverse
order.
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h 4.2.4.23. print_rel

h Routine name: print_rel
File name : source/routines.h
Routine type: void

Author: Balaram Sinharoy

Calling Format: print_rel (s)
Arguments:
char *s -- The Symbol name.
Calling routines: yyparse
Global variable/structures used:
None
Purpose:

This routine prints the entries of the relation_q that corresponds for the file pointed
to by s.
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4.2.4.24. print_subl




Routine name: print_subl
File name : source/file_dump.h
Routine type: void function
Author: Balaram Sinharoy
Calling Format: print_subl ()
Arguments:

None.
Calling routines: yyparse
Global variable/structures used:

None.
Purpose:
The routine print_subl prints the sublinear subscript list .The head of the sublinear sub-
scr?pt lis.t is p9inted to by }hc point;;-,r top‘_subl_list. The prin.ting of the.subh:ncar su.b- *
script will be in the opposite order in which they are found in the specification. This

routine also prints the associated equation tree pointed to by the other_pointers field of
the sublinear subscript entry in the symbol table.
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5. Dimensionality propagation

5.1. The objective

The purpose of the dimensionality propagation is to assign correct dimensionality
to all the variables that are used in the assertions. The basic algorithm is as follows.
We know that all the variables that are fields of some input or output file structure has
their dimensionality correctly defined in the definition of that file. We start our dimen-
sion propagation from these fields. We go through the array graph for this purpose. We
begin with the list of variables which belongs to some input or output file. Looking a:
the array graph we know which equations has used this variable (in the right hand side
or on the left hand side). We find out the dimensionality that has been used for that
variable in that equation. We find out the difference in dimensionality in the use of
that variable in that equation and the definition (or in later stage, the established
dimensionality in earlier iteration ) of that variable. We call this difference DIMDIF.
Now we know that all the variables that has been used in that equation has the actual
dimensionality equal to the number of index used for that variable in this particular
equation plus DIMDIF. Thus we establish the actual dimensionality of each variable
in this equation and then we keep variables tor which the dimensionality has been

established into a queue. In the next iteration of the same process we can start with the
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new queuc of variables and propagate the dimensionality to other variables that are
used in other equationother equations. When we have established the dimensionality of
some variable, we keep track of the assertion which has caused the dimensionality of
that variable to be established. We also set a flag to indicate that the dimensionality
has been established. In later iteration if we find that we are attempting to establish the
dimensionality of some variable whose dimensionality has already been found, we
check whether these two values of the dimensionality agrees. If they do not agree we
know that the user has made some mistake in dropping the dimensionality of a vari-
able in some equation. We can not be absolutely sure exactly in which equation the
user has made the mistake. So in case any error is found we first report to the user the
error. To help the user to find out exactly where he has made the mistake we list also
some equations. These are all the equations that has been used in establishing the
dimensionality of this variable. When listing, we go back upto the equation which is
the common root (if any found) in the tree of assertions. The tree nodes are the asser-
tions and there is an edge from each assertion whose dimensionality has been defined
by the use of a variable, to the assertion which has caused the dimensionality of that
variable to be established. If there is no common root in this tree, then we end up
with two input or output variables which caused us to establish different dimensionali-

ties of the same variable.

E 1
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The algorithm is divided into a few routines. The algorithm is described below.

5.2. The algorithm for dimensionality propagation.

The main routine of the EPL system calls dim_prop for dimensionality propaga-
tion. No argument need to be passed to the routine. The algorithm for dimensionality

propagation can be described as follow.

Algorithm dim_prop ()

{

/* Initialization */

Q <- all array grap nodes that denote a data element
which belongs to an input or output file.

level = 0;
/* Iteration */

prop (); /* this propagates the dimensionality information
for the level O and sets the QP queue to the
set of data elements for whom the dimensionality
has been established */

while (QP != NULL) /* QP contains all the data elements for which
dimensionality has just been established but
dimensionality has not been propagated yet
using them. */
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Q<- QP
prop (); /* Propagate dimensionality using this nes data
elements */

e - -~ - -~y S - Ay D - - - " - - " .y~ - o o - - -t - " - - oy - o o o ———

Algorithm prop ()

{
QP = NULL;

For each data element "S" in the queue Q do

{
for each assertion arry_node "N" in the owner_list and dep_list
of "§" do
{
If the assertion has not been processed yet (a bit is set
always when an assertion is processed) do !1
{
node = dim_search (N->ptr.ptp,S->ptr.str); !7

/* Search the equation tree for this assertion
to find out the first occurence of this
variable in that equation tree (so that

the symbol table pointer for that entry in the >
g
—_— y
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equation tree matches with the symbol table
entry for the data element "S".) */
count = count_index (node); /* Count the number of index */

DIMDIF = established number of index for node "S" -
count;

dim_insert (N,DIMDIF,N);

set the dim_defn field of the array graph node N to node §;
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Algorithm dim_search(ASS,NODE)
/* This algorithm searches for the first occurence
of the equation tree node NODE in the equation tree
pointed to by ASS */
if (ASS == NODE) ‘

return (ASS);

else if (ASS == NULL)

return (NULL), ﬁ

AR,
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else

newnode = search (ass->left_child, NODE);
if (newnode == NULL) then
search(ass->right_child, NODE);

return (newnode);

B R R e R el R N et R L

Algorithm dim_insert (N, DIMDIF,ASS)

{
if (N == NULL)
return ();

else

{

if ( N is a variable node ) then
{

count = count_index (N);

dimn = count + DIMDIF;

if (dim_proc field of the symbol table entry for N is 0) then
{
set the dimensionality field to dimn;
set dim_proc to 1;
set dim_defn field of the array graph entry for N to ASS;
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TR

insert the array graph node for N in QP;
}

else

{
if (dimn != the dimensionality field of the symbol table

entry for N)
dim_error (ASS, dim_defn field of array graph entry for N);

}
}

dim_insert (left child of N in equation_tree, DIMDIF, ASS);
dim_insert (right child of N in equation_tree, DIMDIF, ASS);

S p T P g v B Bt Y A - A " O -t 0 " ot o - -y~ . » Y v N e A aw ot o oy " - e o~ - - o -~ A

Algorithm count_index (node);
{
count = 0;
new_node = node->left_child;
b while (new_node != NULL)
{
!’ count ++;

new_node = new_node->left_child;
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Algorithm dim_error (this_ass, prev_ass)
3 :
dim_list(this_ass , tablel, countl);
dim_list (prev_ass, table2, count2);
dim_cmp (tablel, table2, countl, count2);
print error messages along with the assertion numbers contained in the

adjusted contents of tablel and tableZ;
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Algorithm dim_cmp (tablel,table2,countl,count2)

{

Find the first assertion number in tablel that is also in

table2;

set countl to include elements in tablel upto this .%
@
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assertion number;

set count2 to include elements in table2 upto this

assertion number;

}
} .
E Algorithm dim_list ( ass,table,count)
: {
L count = 0;
defn_ptr = ass;

while (defn_ptr != NULL) do
a (
if (defn_ptr points to an assertion node in the array graph)
{
insert defn_ptr in the table;
defn_ptr = defn_ptr->dim_defn;

? count+<+;
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